Question

1.4.3. Let T(x) =Ax+b be an invertible affine transformation of R3. Show that T ^-1 is...

1.4.3. Let T(x) =Ax+b be an invertible affine transformation of R3.
Show that T ^-1 is also affine.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Define T : P2 → R3 via T(a+bx+cx2) = (a+c,c,b−c), and let B = {1,x,x2} and...
Define T : P2 → R3 via T(a+bx+cx2) = (a+c,c,b−c), and let B = {1,x,x2} and D ={(1, 0, 0), (0, 1, 0), (0, 0, 1)}. (a) Find MDB(T) and show that it is invertible. (b) Use the fact that MBD(T−1) = (MDB(T))−1 to find T−1. Hint: A linear transformation is completely determined by its action on any spanning set and hence on any basis.
b) More generally, find the matrix of the linear transformation T : R3 → R3 which...
b) More generally, find the matrix of the linear transformation T : R3 → R3 which is u1  orthogonal projection onto the line spanu2. Find the matrix of T. Prove that u3 T ◦ T = T and prove that T is not invertible.
a. Let T : V → W be left invertible. Show that T is injective. b....
a. Let T : V → W be left invertible. Show that T is injective. b. Let T : V → W be right invertible. Show that T is surjective
Let T be the function from R2 to R3 defined by T ( (x,y) ) =...
Let T be the function from R2 to R3 defined by T ( (x,y) ) = (x, y, 0). Prove that T is a linear transformation, that it is 1-1, but that it is not onto.
Show that MDB(T) is invertible and use the fact that MBD(T^-1)=[MBD(T)]^-1 to determine the action of...
Show that MDB(T) is invertible and use the fact that MBD(T^-1)=[MBD(T)]^-1 to determine the action of T^-1. T: P2-->R3, T(a+bx+cx^2)=(a+c,c,b-c); B={1,x,x^2}, D=standard
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by...
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by 60◦ about the origin, then reflects it about the line y = x, and then reflects it about the x-axis. a) Find the standard matrix of the linear transformation T. b) Determine if the transformation T is invertible. Give detailed explanation. If T is invertible, find the standard matrix of the inverse transformation T−1. Please show all steps clearly so I can follow your...
Let A be an invertible matrix. Show that A∗ is invertible, and that (A∗ ) −1...
Let A be an invertible matrix. Show that A∗ is invertible, and that (A∗ ) −1 = (A−1 ) ∗ .
Consider the transformation, T : P1 → P2 defined by T(ax + b) = ax2 +...
Consider the transformation, T : P1 → P2 defined by T(ax + b) = ax2 + ax + a (a) Find the image of 2x + 1. (b) Find another element of P1 that has the same image. (c) Is T a one-to-one transformation? Why or why not? (d) Find ker(T) and determine the basis for ker(T). What is the dimension of kernel(T)? (e) Find range(T) and determine a basis for range(T). What is the dimension of range(T)?
Consider the transformation T: R2 -> R3 defined by T(x,y) = (x-y,x+y,x+2y) Answer the Following a)Find...
Consider the transformation T: R2 -> R3 defined by T(x,y) = (x-y,x+y,x+2y) Answer the Following a)Find the Standard Matrix A for the linear transformation b)Find T([1 -2]) c) determine if c = [0 is in the range of the transformation T 2 3] Please explain as much as possible this is a test question that I got no points on. Now studying for the final and trying to understand past test questions.
Let F be a field and Aff(F) := {f(x) = ax + b : a, b...
Let F be a field and Aff(F) := {f(x) = ax + b : a, b ∈ F, a ≠ 0} the affine group of F. Prove that Aff(F) is indeed a group under function composition. When is Aff(F) abelian?