Question

Find the volume of the parallelepiped determined by the vectors →a=〈4,2,−1〉a→=〈4,2,-1〉, →b=〈0,3,4〉b→=〈0,3,4〉, →c=〈2,3,1〉c→=〈2,3,1〉.

Find the volume of the parallelepiped determined by the vectors →a=〈4,2,−1〉a→=〈4,2,-1〉, →b=〈0,3,4〉b→=〈0,3,4〉, →c=〈2,3,1〉c→=〈2,3,1〉.

Homework Answers

Answer #1

The given vectors are

Recall that the volume of a parallelepiped determined by the vectors is given by the absolute value of their triple scalar product, i.e.

When expanded ,the inside of the right hand side becomes

where are the components of the vectors respectively.

Plug in the values and evaluate:

Hence, the required volume is

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the volume of the parallelepiped determined by the vectors a, b, and c. a =...
Find the volume of the parallelepiped determined by the vectors a, b, and c. a = <1, 4, 3>, b = <-1,1, 4> and c = <5, 1, 5>
Find the volume of the parallelepiped determined by the vectors a, b, and c. a =...
Find the volume of the parallelepiped determined by the vectors a, b, and c. a = 2i + 4j − 4k,    b = 3i − 3j + 3k,    c = −4i + 4j + 3k ( ) cubic units
(a) Find the volume of the parallelepiped determined by the vectors a =< 2, −1, 3...
(a) Find the volume of the parallelepiped determined by the vectors a =< 2, −1, 3 >, b =< −3, 0, 1 >, c =< 2, 4, 1 >. (b) Find an equation of the plane that passes through the point (2, 4, −3) and is perpendicular to the planes 3x + 2y − z = 1 and x − 2y + 3z = 4.
Find the volume of the parallelepiped defined by the vectors ⎡⎣⎢−222⎤⎦⎥,⎡⎣⎢1−32⎤⎦⎥,⎡⎣⎢−50−1⎤⎦⎥.
Find the volume of the parallelepiped defined by the vectors ⎡⎣⎢−222⎤⎦⎥,⎡⎣⎢1−32⎤⎦⎥,⎡⎣⎢−50−1⎤⎦⎥.
Using MATLAB, create three vectors a = 4i, b = 2i - 4j, and c =...
Using MATLAB, create three vectors a = 4i, b = 2i - 4j, and c = -2i + 3k, where i, j and k are unit vectors of three axes in Cartesian coordinate system. Compute |?∙(?×?)| using the predefined MATLAB commands and show that it is the volume of a parallelepiped defined by three vectors a, b and c.
Find the volume of a parallelepiped if four of its eight vertices area ? = (0,0,0),...
Find the volume of a parallelepiped if four of its eight vertices area ? = (0,0,0), ? = (1,0,2), ? = (0,2,1), ? = (3,4,0).
Find the volume of the parallelepiped with adjacent edges PQ, PR, and PS. P(−2, 1, 0),...
Find the volume of the parallelepiped with adjacent edges PQ, PR, and PS. P(−2, 1, 0), Q(3, 3, 3), R(1, 4, −1), S(3, 6, 2)
Homework #2 a) Find a vector perpendicular to the vectors 2i + 3j-k and 3i +...
Homework #2 a) Find a vector perpendicular to the vectors 2i + 3j-k and 3i + k b)Find the area of the triangle whose vertices are (2, -1,1), (3,2,1) and (0, -1,3) c)Find the volume of the parallelepiped with adjacent axes PQ, PR, and PS with P (1, -2.2), Q (1, -1.3), R (1,1,0), S (1,2,3 )
Find the volume of the parallelepiped with adjacent edges PQ, PR, PS. P(3, 0, 3),    Q(−1, 2,...
Find the volume of the parallelepiped with adjacent edges PQ, PR, PS. P(3, 0, 3),    Q(−1, 2, 8),    R(6, 1, 1),    S(2, 6, 6)
A parallelpiped is =by the vectors a= <1,1,4>, b= <4,0,1>, c=<3,1,0>.   Therefore the volume of this...
A parallelpiped is =by the vectors a= <1,1,4>, b= <4,0,1>, c=<3,1,0>.   Therefore the volume of this parallelpiped is ______________ units.