Question

Question about the Mathematical Real Analysis Proof Show that if xn → 0 then √xn →...

Question about the Mathematical Real Analysis Proof

Show that if xn → 0 then √xn → 0.

Proof. Let ε > 0 be arbitrary. Since xn → 0 there is some N ∈N such that |xn| < ε^2 for all n > N. Then for all n > N we have that |√xn| < ε

My question is based on the sequence convergence definition it should be absolute an-a<ε    but here why we can take xn<ε^2 rather than ε?

Please explain and draw the number line to explain ε.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Mathematical Real Analysis Convergence Sequence Conception Question: By the definition: for all epsilon >0 there exists...
Mathematical Real Analysis Convergence Sequence Conception Question: By the definition: for all epsilon >0 there exists a N such that for all n>N absolute an-a < epsilon Question: assume bn ----->b and b is not 0.  prove that lim n to infinity 1/ bn = 1/ b . Please Tell me why here we need to have N1 and N2 and Find the Max(N1,N2) but other example we don't. Solve the question step by step as well
) Let α be a fixed positive real number, α > 0. For a sequence {xn},...
) Let α be a fixed positive real number, α > 0. For a sequence {xn}, let x1 > √ α, and define x2, x3, x4, · · · by the following recurrence relation xn+1 = 1 2 xn + α xn (a) Prove that {xn} decreases monotonically (in other words, xn+1 − xn ≤ 0 for all n). (b) Prove that {xn} is bounded from below. (Hint: use proof by induction to show xn > √ α for all...
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS...
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS Definition: A sequence {an} for n = 1 to ∞ converges to a real number A if and only if for each ε > 0 there is a positive integer N such that for all n ≥ N, |an – A| < ε . Let P be 6. and Let Q be 24. Define your sequence to be an = 4 + 1/(Pn +...
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS...
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS Definition: A sequence {an} for n = 1 to ∞ converges to a real number A if and only if for each ε > 0 there is a positive integer N such that for all n ≥ N, |an – A| < ε . Let P be 6. and Let Q be 24. Define your sequence to be an = 4 + 1/(Pn +...
Claim: If (sn) is any sequence of real numbers with ??+1 = ??2 + 3?? for...
Claim: If (sn) is any sequence of real numbers with ??+1 = ??2 + 3?? for all n in N, then ?? ≥ 0 for all n in N. Proof: Suppose (sn) is any sequence of real numbers with ??+1 = ??2 + 3?? for all n in N. Let P(n) be the inequality statements ?? ≥ 0. Let k be in N and suppose P(k) is true: Suppose ?? ≥ 0. Note that ??+1 = ??2 + 3?? =...
Mathematical Real Analysis Questions You have to answer two questions in order to get a thumb's...
Mathematical Real Analysis Questions You have to answer two questions in order to get a thumb's up and good Q.1  Let A = (0,2]. Prove that A does not have a minimum. What is the infimum of A? Q.2. Theorem. Given any two real numbers x < y, there exists an irrational number satisfying x <t< y. Proof. It follows from x < y that x−√2 < y−√2. Since Q is dense in R, there exists p ∈Q such that x−√2...
Do not use binomial theorem for this!! (Real analysis question) a) Let (sn) be the sequence...
Do not use binomial theorem for this!! (Real analysis question) a) Let (sn) be the sequence defined by sn = (1 +1/n)^(n). Prove that sn is an increasing sequence with sn < 3 for all n. Conclude that (sn) is convergent. The limit of (sn) is referred to as e and is used as the base for natural logarithms. b)Use the result above to find the limit of the sequences: sn = (1 +1/n)^(2n) c)sn = (1+1/n)^(n-1)
Possible Duplicate: What experiments prove the greenhouse effect? I am seeking for a proof that CO2...
Possible Duplicate: What experiments prove the greenhouse effect? I am seeking for a proof that CO2 is a greenhouse gas. I posted this on Skeptic.SE recently but found no help in seeking for proof: I assisted to a physicist conference in my university a few years ago against the case that carbon dioxide was a cause of global warming. The main point was that CO2 is not a greenhouse gas. I did a research to find evidence for either side...
The question assumes the standard formalism with projector-valued measures rather than POVMs. Suppose a measurement has...
The question assumes the standard formalism with projector-valued measures rather than POVMs. Suppose a measurement has two possible outcomes, and the corresponding probabilities are greater than 0 and less than 1. Neither outcome is therefore certain. Then why is it certain that either outcome is obtained (as it seems, if the probabilities add up to 1)? Added after four answers: All the answers provided so far elaborate on the comment by @Vladimir: "It is not a 'quantum mechanical' feature but...
the following list of fallacies examined in the question Ad hominem Composition Illicit appeal to authority...
the following list of fallacies examined in the question Ad hominem Composition Illicit appeal to authority Appeal to the few Appeal to a saying Appeal to Ignorance Appeal to novelty Appeal to tradition Bad ANALOGY Bandwagon Begging the question Circular argument Division Equivocation False alternative False cause False disjunct Genetic Fallacy Half-truth Hasty generalization Irrelevant reasons Leading question Lifting out of context Question begging definition Red herring Slippery slope Straw man Weasel words Here is the Question Identify the logical...