Question

Find numbers x and y so that w⃗ −x⋅u⃗ −y⋅v⃗ w→−x⋅u→−y⋅v→ is perpendicular to both u⃗...

Find numbers x and y so that w⃗ −x⋅u⃗ −y⋅v⃗ w→−x⋅u→−y⋅v→ is perpendicular to both u⃗ and v⃗, where w⃗ =[9,132,42], u⃗ =[6,1,1], and v⃗ =[3,3,−21](notice that u⃗ is perpendicular to v⃗)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find numbers xx and yy so that w⃗ −x⋅u⃗ −y⋅v⃗ w→−x⋅u→−y⋅v→ is perpendicular to both u⃗...
Find numbers xx and yy so that w⃗ −x⋅u⃗ −y⋅v⃗ w→−x⋅u→−y⋅v→ is perpendicular to both u⃗ u→ and v⃗ v→, where w⃗ =[−32,130,80]w→=[−32,130,80], u⃗ =[5,2,1]u→=[5,2,1], and v⃗ =[4,2,−24]v→=[4,2,−24] (notice that u⃗ u→ is perpendicular to v⃗ v→).
Find numbers x and y so that w-x⋅u-y⋅v is perpendicular to both u and v, where...
Find numbers x and y so that w-x⋅u-y⋅v is perpendicular to both u and v, where w=[-28,-25,39], u=[1,-4,2], and v=[7,3,2].
Let u=[6,2 ], v=[3,3 ], and b=[4,1 ]. Find (x⋅u+y⋅v-b)×2 u, where x,y are scalars.
Let u=[6,2 ], v=[3,3 ], and b=[4,1 ]. Find (x⋅u+y⋅v-b)×2 u, where x,y are scalars.
For the function w=f(x,y) , x=g(u,v) , and y=h(u,v). Use the Chain Rule to     Find...
For the function w=f(x,y) , x=g(u,v) , and y=h(u,v). Use the Chain Rule to     Find ∂w/∂u and ∂w/∂v when u=2 and v=3 if g(2,3)=4, h(2,3)=-2, gu(2,3)=-5,        gv(2,3)=-1 , hu(2,3)=3, hv(2,3)=-5, fx(4,-2)=-4, and fy(4,-2)=7    ∂w/∂u=    ∂w/∂v =
It is not true that the equality u x (v x w) = (u x v)...
It is not true that the equality u x (v x w) = (u x v) x w for all vectors. 1. Find explicit vector for u, v and w where this equality does not hold. 2. U, V and W are all nonzero vectors that satisfy the equality. Show that at least one of the conditions below holds: a) v is orthogonal to u and w. b) w is a scalar multiple of u. You can possibly use a...
Let s = f(x; y; z) and x = x(u; v; w); y = y(u; v;...
Let s = f(x; y; z) and x = x(u; v; w); y = y(u; v; w); z = z(u; v; w). To calculate ∂s ∂u (u = 1, v = 2, w = 3), which of the following pieces of information do you not need? I. f(1, 2, 3) = 5 II. f(7, 8, 9) = 6 III. x(1, 2, 3) = 7 IV. y(1, 2, 3) = 8 V. z(1, 2, 3) = 9 VI. fx(1, 2, 3)...
U = {q, r, s, t, u, v, w, x, y, z}     A = {q,...
U = {q, r, s, t, u, v, w, x, y, z}     A = {q, s, u, w, y}     B = {q, s, y, z}     C = {v, w, x, y, z}. List the elements in A - B.
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b...
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b are Real. Find T (au + bv) , if u = (x, y) v = (z, w) and uv = (xz-yw, xw + yz) Let the linear transformation T: V---> W be such that T (u) = T (x, y) = (xy, 0) where u = (x, y), with 2, -3. Then, if u = ( 1.0) and v = (0.1). Find the value...
Let u=〈5,-1,6〉, v=〈0,1,2〉, and w=〈1,3,4〉. Find (a)u×(v×w) (b)(u×v)×w (c)(u×v)×(v×w) d)(v×w)×(u×v).
Let u=〈5,-1,6〉, v=〈0,1,2〉, and w=〈1,3,4〉. Find (a)u×(v×w) (b)(u×v)×w (c)(u×v)×(v×w) d)(v×w)×(u×v).
3-vectors u, v, and w satisfy u⋅(v ×w)=7. Find [u,v,w]⋅[v×w, u×w,u×v]^T using properties of the triple...
3-vectors u, v, and w satisfy u⋅(v ×w)=7. Find [u,v,w]⋅[v×w, u×w,u×v]^T using properties of the triple scalar product.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT