Question

Find the solution of the given initial value problem: 3y′′′+72y′−480y=0 y(0)=10, y′(0)=34, y′′(0)=−248

Find the solution of the given initial value problem:

3y′′′+72y′−480y=0

y(0)=10, y′(0)=34, y′′(0)=−248

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the solution of the given initial value problem. ty′+3y=t2−t+5, y(1)=5, t>0
Find the solution of the given initial value problem. ty′+3y=t2−t+5, y(1)=5, t>0
Solve the given initial-value problem. y''' + 3y'' − 13y' − 15y = 0,    y(0) = y'(0)...
Solve the given initial-value problem. y''' + 3y'' − 13y' − 15y = 0,    y(0) = y'(0) = 0,    y''(0) = 1
Find the solution of the given initial value problem: y " + y = f(t); y(0)...
Find the solution of the given initial value problem: y " + y = f(t); y(0) = 6, y' (0) = 3 where f(t) = 1, 0 ≤ t < π 2 0, π 2 ≤ t < ∞
Solve the given initial-value problem. 2y'' + 3y' − 2y = 10x2 − 4x − 15,  y(0)...
Solve the given initial-value problem. 2y'' + 3y' − 2y = 10x2 − 4x − 15,  y(0) = 0, y'(0) = 0
Find the solution of the given initial value problem: y(4)+2y′′+y=5t+2; y(0)=y′(0)=0, y′′(0)=y'''(0)=1
Find the solution of the given initial value problem: y(4)+2y′′+y=5t+2; y(0)=y′(0)=0, y′′(0)=y'''(0)=1
Solve the initial value problem: y' +3y = 10sint when y(0) = 0
Solve the initial value problem: y' +3y = 10sint when y(0) = 0
Find the first five nonzero terms in the solution of the given initial value problem. y′′−xy′−y=0,...
Find the first five nonzero terms in the solution of the given initial value problem. y′′−xy′−y=0, y(0)=5, y′(0)=8 Enter an exact answer.
find the solution of the given initial value problem 1. y''+y'−2y=0, y(0) =1, y'(0) =1 2....
find the solution of the given initial value problem 1. y''+y'−2y=0, y(0) =1, y'(0) =1 2. 6y''−5y'+y=0, y(0) =4, y'(0) =0 3. y''+5y'+3y=0, y(0) =1, y'(0) =0 4. y''+8y'−9y=0, y(1) =1, y'(1) =0
Given the second order initial value problem y′′−3y′=12δ(t−2),  y(0)=0,  y′(0)=3y″−3y′=12δ(t−2),  y(0)=0,  y′(0)=3Let Y(s)Y(s) denote the Laplace transform of yy. Then...
Given the second order initial value problem y′′−3y′=12δ(t−2),  y(0)=0,  y′(0)=3y″−3y′=12δ(t−2),  y(0)=0,  y′(0)=3Let Y(s)Y(s) denote the Laplace transform of yy. Then Y(s)=Y(s)=  . Taking the inverse Laplace transform we obtain y(t)=
Find the solution to the boundary value problem: d2y/dt2−4dy/dt+3y=0,   y(0)=7,y(1)=8 y=
Find the solution to the boundary value problem: d2y/dt2−4dy/dt+3y=0,   y(0)=7,y(1)=8 y=