Question

Let S(n) be the statement: The sum of the first n natural numbers is 1/2 n2...

Let S(n) be the statement: The sum of the first n natural numbers is 1/2 n2 + 1/2 n + 1000. Show that if S(k) is true, so is S(k+1).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find 1+2+3+4+...90, the sum of the first 90 natural numbers. The sum is     .
Find 1+2+3+4+...90, the sum of the first 90 natural numbers. The sum is     .
Let S be the set {(-1)^n +1 - (1/n): all n are natural numbers}. 1. find...
Let S be the set {(-1)^n +1 - (1/n): all n are natural numbers}. 1. find the infimum and the supremum of S, and prove that these are indeed the infimum and supremum. 2. find all the boundary points of the set S. Prove that each of these numbers is a boundary point. 3. Is the set S closed? Compact? give reasons. 4. Complete the sentence: Any nonempty compact set has a....
Let S(n) be a monotonic non-decreasing positive function defined for all natural numbers n. We do...
Let S(n) be a monotonic non-decreasing positive function defined for all natural numbers n. We do not know the value of S(n) for every n ∈ N except when n = 2k for some k ∈ N, in which case S(n) = n log n + 3n − 5. Show that S(n) ∈ Θ(n log n). Hint: (if you use it, you need to prove it): ∀n > 1 ∈ N, ∃k ∈ N, such that 2k-1 ≤ n ≤...
Let S(n) be a monotonic non-decreasing positive function defined for all natural numbers n. We do...
Let S(n) be a monotonic non-decreasing positive function defined for all natural numbers n. We do not know the value of S(n) for every n ∈ N except when n = 2k for some k ∈ N, in which case S(n) = n log n + 3n − 5. Show that S(n) ∈ Θ(n log n). Hint: (if you use it, you need to prove it): ∀n > 1 ∈ N, ∃k ∈ N, such that 2k-1 ≤ n ≤...
Let S(n) be a monotonic non-decreasing positive function defined for all natural numbers n. We do...
Let S(n) be a monotonic non-decreasing positive function defined for all natural numbers n. We do not know the value of S(n) for every n ∈ N except when n = 2k for some k ∈ N, in which case S(n) = n log n + 3n − 5. Show that S(n) ∈ Θ(n log n). Hint: (if you use it, you need to prove it): ∀n > 1 ∈ N, ∃k ∈ N, such that 2k-1 ≤ n ≤...
Let S = {0,1,2,3,4,...}, A = the set of natural numbers divisible by 2, and B...
Let S = {0,1,2,3,4,...}, A = the set of natural numbers divisible by 2, and B = the set of numbers divisible by 5. What is the set A intersection B? What is the set A union B? Please show your work.
Let N2K be the set of the first 2k natural numbers. Prove that if we choose...
Let N2K be the set of the first 2k natural numbers. Prove that if we choose k + 1 numbers out of these 2k, there is at least one pair of numbers a, b for which a is divisible by b.
If we let N stand for the set of all natural numbers, then we write 6N...
If we let N stand for the set of all natural numbers, then we write 6N for the set of natural numbers all multiplied by 6 (so 6N = {6, 12, 18, 24, . . . }). Show that the sets N and 6N have the same cardinality by describing an explicit one-to-one correspondence between the two sets.
Real Topology: let A={1/n : n is natural} be a subset of the real numbers. Is...
Real Topology: let A={1/n : n is natural} be a subset of the real numbers. Is A open closed, or neither? Justify your answer.
Show by induction that 1+3+5+...+(2n-1) = n^2 for all n in the set of Natural Numbers
Show by induction that 1+3+5+...+(2n-1) = n^2 for all n in the set of Natural Numbers