Question

(dx/dt) = x+4z (dy/dt) = 2y (dz/dt) = 3x+y-3z

(dx/dt) = x+4z

(dy/dt) = 2y

(dz/dt) = 3x+y-3z

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
find dx/dx and dz/dy z^3 y^4 - x^2 cos(2y-4z)=4z
find dx/dx and dz/dy z^3 y^4 - x^2 cos(2y-4z)=4z
dx dt = y − 1 dy dt = −3x + 2y x(0) = 0, y(0)...
dx dt = y − 1 dy dt = −3x + 2y x(0) = 0, y(0) = 0
(x+1)y'=y-1 2) dx+(x/y+(e)?)dy=0 3)ty'+2y=sint 4) y"-4y=-3x²e3x 5) y"-y-2y=1/sinx 6)2x2y"+xy'-2y=0 ea)y=x' b) x=0 2dx/dt-2dy/dt-3x=t; 2
(x+1)y'=y-1 2) dx+(x/y+(e)?)dy=0 3)ty'+2y=sint 4) y"-4y=-3x²e3x 5) y"-y-2y=1/sinx 6)2x2y"+xy'-2y=0 ea)y=x' b) x=0 2dx/dt-2dy/dt-3x=t; 2
dx/dt=y, dy/dt=2x-2y
dx/dt=y, dy/dt=2x-2y
Solve the system of equations by method of the Laplace transform: 3 dx/dt + 3x +2y...
Solve the system of equations by method of the Laplace transform: 3 dx/dt + 3x +2y = e^t 4x - 3 dy/dt +3y = 3t x(0)= 1, y(0)= -1
Use the Laplace transform to solve the given system of differential equations. dx/dt=x-2y dy/dt=5x-y x(0) =...
Use the Laplace transform to solve the given system of differential equations. dx/dt=x-2y dy/dt=5x-y x(0) = -1, y(0) = 6
Solve the following system of differential equations: dx/dt =x+2y dy/dt =−x+3y
Solve the following system of differential equations: dx/dt =x+2y dy/dt =−x+3y
dx/dt - 3(dy/dt) = -x+2 dx/dt + dy/dt = y+t Solve the system by obtaining a...
dx/dt - 3(dy/dt) = -x+2 dx/dt + dy/dt = y+t Solve the system by obtaining a high order linear differential equation for the unknown function of x (t).
Let w(x,y,z) = x^2+y^2+z^2 where x=sin(8t), y=cos(8t) , z= e^t Calculate dw/dt by first finding dx/dt,...
Let w(x,y,z) = x^2+y^2+z^2 where x=sin(8t), y=cos(8t) , z= e^t Calculate dw/dt by first finding dx/dt, dy/dt, and dz/dt and using the chain rule dx/dt = dy/dt= dz/dt= now using the chain rule calculate dw/dt 0=
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y...
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y Initial conditions: x(0) = 0 y(0) = 2 a) Find the solution to this initial value problem (yes, I know, the text says that the solutions are x(t)= e^3t - e^-t and y(x) = e^3t + e^-t and but I want you to derive these solutions yourself using one of the methods we studied in chapter 4) Work this part out on paper to...