Question

If p(x) and q(x) are arbitrary polynomials of degree at most 2, then the mapping =p(−1)q(−1)+p(0)q(0)+p(2)q(2)...

If p(x) and q(x) are arbitrary polynomials of degree at most 2, then the mapping

=p(−1)q(−1)+p(0)q(0)+p(2)q(2) defines an inner product in P3. Use this inner product to find

, ||p||, ||q||, and the angle θ between p(x) and q(x) for p(x)=2x^2+3 and q(x)=2x^2−6x.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let Poly3(x) = polynomials in x of degree at most 2. They form a 3- dimensional...
Let Poly3(x) = polynomials in x of degree at most 2. They form a 3- dimensional space. Express the operator Q(p) = xp' + p'' . as a matrix (i) in basis {1, x, x^2 }, (ii) in basis {1, x, 1+x^2 } . Here, where p(x) represents a polynomial, p’ is its derivative, and p’’ its second derivative.
Question 4. Consider the following subsets of the vector space P3 of polynomials of degree 3...
Question 4. Consider the following subsets of the vector space P3 of polynomials of degree 3 or less: S = {p(x) : p(1) = 0} and T = {q(x) : q(0) = 1} Determine if these subsets are vectors spaces with the standard operations for polynomials
Consider P3 = {a + bx + cx2 + dx3 |a,b,c,d ∈ R}, the set of...
Consider P3 = {a + bx + cx2 + dx3 |a,b,c,d ∈ R}, the set of polynomials of degree at most 3. Let p(x) be an arbitrary element in P3. (a) Show P3 is a vector space. (b) Find a basis and the dimension of P3. (c) Why is the set of polynomials of degree exactly 3 not a vector space? (d) Find a basis for the set of polynomials satisfying p′′(x) = 0, a subspace of P3. (e) Find...
let p(x) and Q(x) be two polynomials and consider the following two cases: case1:p(x) x Q(x)...
let p(x) and Q(x) be two polynomials and consider the following two cases: case1:p(x) x Q(x) case2: 3 Q (x) for each case, find the following: a) the number of terms b) the degree
5. Let S be the set of all polynomials p(x) of degree ≤ 4 such that...
5. Let S be the set of all polynomials p(x) of degree ≤ 4 such that p(-1)=0. (a) Prove that S is a subspace of the vector space of all polynomials. (b) Find a basis for S. (c) What is the dimension of S? 6. Let ? ⊆ R! be the span of ?1 = (2,1,0,-1), ?2 =(1,2,-6,1), ?3 = (1,0,2,-1) and ? ⊆ R! be the span of ?1 =(1,1,-2,0), ?2 =(3,1,2,-2). Prove that V=W.
Orthogonalize the basis vectors in the spanning set p=2x=1 and q=3x+2 with the inner product of...
Orthogonalize the basis vectors in the spanning set p=2x=1 and q=3x+2 with the inner product of p and q defined to be the evaluation inner product evaluated at x=-1 and x=2. Use gram Schmidt to orthogonalize.
1. Given the point P(5, 4, −2) and the point Q(−1, 2, 7) and R(0, 3,...
1. Given the point P(5, 4, −2) and the point Q(−1, 2, 7) and R(0, 3, 0) answer the following questions • What is the distance between P and Q? • Determine the vectors P Q~ and P R~ ? • Find the dot product between P Q~ and P R~ . • What is the angle between P Q~ and P R~ ? • What is the projP R~ (P R~ )? • What is P Q~
Find an inner product on vector space P of polynomials that makes x and y orthogonal....
Find an inner product on vector space P of polynomials that makes x and y orthogonal. (x=1+t, y=1-t)
Two polynomials P and D are given. Use either synthetic or long division to divide P(x)...
Two polynomials P and D are given. Use either synthetic or long division to divide P(x) by D(x), and express the quotient P(x)/D(x) in the form P(x)/D(x) = Q(x) + R(x)/D(x) P(x) = x^3 + 6x + 5, D(x) = x − 4
Write down all the monic irreducible polynomials of degree 1 in (Z/5Z)[x]. What is the product...
Write down all the monic irreducible polynomials of degree 1 in (Z/5Z)[x]. What is the product of these 5 polynomials? Do the same for degree 2 in (Z/5Z)[x].{Hint: there are 10of them} what is the product of these 10 polynomials
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT