Question

Problem 3 Countable and Uncountable Sets (a) Show that there are uncountably infinite many real numbers...

Problem 3 Countable and Uncountable Sets

(a) Show that there are uncountably infinite many real numbers in the interval (0, 1). (Hint: Prove this by contradiction. Specifically, (i) assume that there are countably infinite real numbers in (0, 1) and denote them as x1, x2, x3, · · · ; (ii) express each real number x1 between 0 and 1 in decimal expansion; (iii) construct a number y whose digits are either 1 or 2. Can you find a way to choose 1 or 2 such that y is different from all the xis?)

(b) Is the set of all irrational numbers in (0, 1) countably infinite? Please explain your answer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using field axioms and order axioms prove the following theorems (i) The sets R (real numbers),...
Using field axioms and order axioms prove the following theorems (i) The sets R (real numbers), P (positive numbers) and [1, infinity) are all inductive (ii) N (set of natural numbers) is inductive. In particular, 1 is a natural number (iii) If n is a natural number, then n >= 1 (iv) (The induction principle). If M is a subset of N (set of natural numbers) then M = N The following definitions are given: A subset S of R...
15.) a) Show that the real numbers between 0 and 1 have the same cardinality as...
15.) a) Show that the real numbers between 0 and 1 have the same cardinality as the real numbers between 0 and pi/2. (Hint: Find a simple bijection from one set to the other.) b) Show that the real numbers between 0 and pi/2 have the same cardinality as all nonnegative real numbers. (Hint: What is a function whose graph goes from 0 to positive infinity as x goes from 0 to pi/2?) c) Use parts a and b to...
Real Analysis I Prove the following exercises (show all your work)- Exercise 1.1.1: Prove part (iii)...
Real Analysis I Prove the following exercises (show all your work)- Exercise 1.1.1: Prove part (iii) of Proposition 1.1.8. That is, let F be an ordered field and x, y,z ∈ F. Prove If x < 0 and y < z, then xy > xz. Let F be an ordered field and x, y,z,w ∈ F. Then: If x < 0 and y < z, then xy > xz. Exercise 1.1.5: Let S be an ordered set. Let A ⊂...
Find the LUB and GLB of the following sets: (i) {x | x = 2^(−p)+3^(−q )for...
Find the LUB and GLB of the following sets: (i) {x | x = 2^(−p)+3^(−q )for some p,q ∈ N} (ii) {x ∈ R | 3x^(2)−4x < 1} (iii) the set of all real numbers between 0 and 1 whose decimal expression contains no nines
) Let α be a fixed positive real number, α > 0. For a sequence {xn},...
) Let α be a fixed positive real number, α > 0. For a sequence {xn}, let x1 > √ α, and define x2, x3, x4, · · · by the following recurrence relation xn+1 = 1 2 xn + α xn (a) Prove that {xn} decreases monotonically (in other words, xn+1 − xn ≤ 0 for all n). (b) Prove that {xn} is bounded from below. (Hint: use proof by induction to show xn > √ α for all...
Suppose you will draw 3 marbles without replacement from each of four bags. Bag 1 has...
Suppose you will draw 3 marbles without replacement from each of four bags. Bag 1 has 3 red marbles and 6 black marbles; bag 2 has 10 red marbles and 20 black marbles; bag 3 has 500 red marbles and 1000 black marbles; and bag 4 has an infinite number of marbles, but twice as many black marbles as red. Let X1, X2, and X3 be the numbers of red marbles drawn from bag 1, bag 2, and bag 3,...
1. For each statement that is true, give a proof and for each false statement, give...
1. For each statement that is true, give a proof and for each false statement, give a counterexample     (a) For all natural numbers n, n2 +n + 17 is prime.     (b) p Þ q and ~ p Þ ~ q are NOT logically equivalent.     (c) For every real number x ³ 1, x2£ x3.     (d) No rational number x satisfies x^4+ 1/x -(x+1)^(1/2)=0.     (e) There do not exist irrational numbers x and y such that...