Question

Show that the number of labelled simple graphs with n vertices is 2n(n-1)/2. (By Induction)

Show that the number of labelled simple graphs with n vertices is 2n(n-1)/2. (By Induction)

Homework Answers

Answer #1

Suppose we want to join a vertex with no vertex of a graph having n-1 vertices, the number of ways of doing this is only 1.suppose we want to join this vertex to exactly one vertex of graph having n-1 vertices, the number of ways in which this can be done is exactly n-1 and so on.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Show by induction that 1+3+5+...+(2n-1) = n^2 for all n in the set of Natural Numbers
Show by induction that 1+3+5+...+(2n-1) = n^2 for all n in the set of Natural Numbers
(a) use mathematical induction to show that 1 + 3 +.....+(2n + 1) = (n +...
(a) use mathematical induction to show that 1 + 3 +.....+(2n + 1) = (n + 1)^2 for all n e N,n>1.(b) n<2^n for all n,n is greater or equels to 1
Show by induction that 1 + 3 + 5 + · · · + (2n −...
Show by induction that 1 + 3 + 5 + · · · + (2n − 1) = n^2 for all positive integer n
Used induction to proof that 1 + 2 + 3 + ... + 2n = n(2n+1)...
Used induction to proof that 1 + 2 + 3 + ... + 2n = n(2n+1) when n is a positive integer.
Show all the steps... Prove by induction that 3n < 2n  for all n ≥ ______. (You...
Show all the steps... Prove by induction that 3n < 2n  for all n ≥ ______. (You should figure out what number goes in the blank.)
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive...
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive integersn, 1^3+3^3+5^3+···+(2^n−1)^3=n^2(2n^2−1) (c) For all positive natural numbers n,5/4·8^n+3^(3n−1) is divisible by 19
Prove that the order of complete graph on n ≥ 2 vertices is (n−1)n 2 by......
Prove that the order of complete graph on n ≥ 2 vertices is (n−1)n 2 by... a) Using theorem Ʃv∈V = d(v) = 2|E|. b) Using induction on the number of vertices, n for n ≥ 2.
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 2 2n+1...
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 2 2n+1 + 100.
Used induction to proof that f_1 + f_3 + f_5 + ... + f_(2n-1) = f_(2n)...
Used induction to proof that f_1 + f_3 + f_5 + ... + f_(2n-1) = f_(2n) when n is a positive integer. Notice that f_i represents i-th fibonacci number.
Prove using mathematical induction that 20 + 21 + ... + 2n = 2n+1 - 1...
Prove using mathematical induction that 20 + 21 + ... + 2n = 2n+1 - 1 whenever n is a nonnegative integer.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT