Question

Find the number of integer solutions to x1+x2+x3=20 given the following restrictions: (A) x1>=3, x2>=2,x3>=5 (B)...

Find the number of integer solutions to x1+x2+x3=20 given the following restrictions:

(A) x1>=3, x2>=2,x3>=5

(B) x1>=0, x2>=0, x3<=6

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2. Find the number of integer solutions to x1 + x2 + x3 + x4 +...
2. Find the number of integer solutions to x1 + x2 + x3 + x4 + x5 = 50, x1 ≥ −3, x2 ≥ 0, x3 ≥ 4, x4 ≥ 2, x5 ≥ 12.
Find the number of solutions to x1+x2+x3+x4=16 with integers x1 ,x2, x3, x4 satisfying (a)  xj ≥...
Find the number of solutions to x1+x2+x3+x4=16 with integers x1 ,x2, x3, x4 satisfying (a)  xj ≥ 0, j = 1, 2, 3, 4; (b) x1 ≥ 2, x2 ≥ 3, x3 ≥ −3, and x4 ≥ 1; (c) 0 ≤ xj ≤ 6, j = 1, 2, 3, 4
What is the generating function for the number of non-negative integer solutions to x1 + x2...
What is the generating function for the number of non-negative integer solutions to x1 + x2 + x3 + x4 + x5 = 50 if: 1.) There are no restrictions 2.) xi >= 2 for all i 3.) x1 <= 10 4.) xi <= 12 for all i 5.) if x1 is even
Find the number of distinct solutions for x1 + x2 + x3 = 100 given that...
Find the number of distinct solutions for x1 + x2 + x3 = 100 given that x1, x2, x3 are nonnegative integers with at least one of them being more than 40. use
How many integer solutions exist to the equation x1 + x2 + x3 + x4 =...
How many integer solutions exist to the equation x1 + x2 + x3 + x4 = 50, if x1 ≥ 0, x2 ≥ 2, x3 ≥ 5, and x4 ≤ 2?'
How many integer solutions are there to x1+x2+x3+x4= 100 with all of the following constraints: 10...
How many integer solutions are there to x1+x2+x3+x4= 100 with all of the following constraints: 10 ≤ x1 , 0≤ x2 < 20 , 0 ≤ x3 < 40 , 10 ≤ x4< 50
Max Z = X1 - X2 + 3X3 s.t. X1+X3 = 5 X1+X2 <= 20 X2+X3...
Max Z = X1 - X2 + 3X3 s.t. X1+X3 = 5 X1+X2 <= 20 X2+X3 >= 10 X1 , X2 , X3 >= 0 a) Put the problem into standard form, using slack, excess, and artificial variables. b) Identify the initial BV and NBV along with their values. c) Modify the objective function using an M, a large positive number. d) Apply the Big M method to find the optimal solution
How many different integer solutions are there to the equation x1 + x2 + x3 +...
How many different integer solutions are there to the equation x1 + x2 + x3 + x4 + x5 + x6 + x7 = 23, 0 ≤ xi ≤ 9 ? (a) (2 points) Solve the problem by using Inclusion-Exclusion Formula. (b) (2 points) Check whether your solution obtained from part (a) is right by using the generating function method.
How many non-negative integer solutions are there to x1+x2+x3+x4+x5 = 60 (a) where x1 <= 17...
How many non-negative integer solutions are there to x1+x2+x3+x4+x5 = 60 (a) where x1 <= 17 and x2 <= 17 (b) where x1 <= 17 and x2 <= 17 and x3 <= 17 and x4 <= 17 Side question: is there any reason why, for (a), that we can't just give x1 and x2 both 18 "stars" (from the sticks and stars representation of the problem) and then calculate the number of ways to distribute the remaining 60 - (18...
Given a LP model as:Minimize Z = 2X1+ 4X2+ 6X3 Subject to: X1+2X2+ X3≥2 X1–X3≥1 X2+X3=...
Given a LP model as:Minimize Z = 2X1+ 4X2+ 6X3 Subject to: X1+2X2+ X3≥2 X1–X3≥1 X2+X3= 1 2X1+ X2≤3 X2, X3 ≥0, X1 urs a) Find the standard form of the LP problem. b) Find the starting tableau to solve the Primal LP problem by using the M-Technique.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT