Question

Let a be prime and b be a positive integer. Prove/disprove, that if a divides b^2...

Let a be prime and b be a positive integer. Prove/disprove, that if a divides b^2 then a divides b.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let a positive integer n be called a super exponential number if its prime factorization contains...
Let a positive integer n be called a super exponential number if its prime factorization contains at least one prime to a power of 1000 or larger. Prove or disprove the following statement: There exist two consecutive super exponential numbers.
Let h € N be a prime. Now prove for all b € N, h divides...
Let h € N be a prime. Now prove for all b € N, h divides b^h -b.
Suppose p is a positive prime integer and k is an integer satisfying 1 ≤ k...
Suppose p is a positive prime integer and k is an integer satisfying 1 ≤ k ≤ p − 1. Prove that p divides p!/ (k! (p-k)!).
Prove that the divides relation is a partial order on the set of positive integer.
Prove that the divides relation is a partial order on the set of positive integer.
Prove that the divides relation is a partial order on the set of positive integer.
Prove that the divides relation is a partial order on the set of positive integer.
Prove or disprove that 3|(n^3 − n) for every positive integer n.
Prove or disprove that 3|(n^3 − n) for every positive integer n.
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0...
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0 (mod n), then a ≡ 0 (mod n) or b ≡ 0 (mod n). (b) Prove or disprove: Suppose p is a positive prime. If ab ≡ 0 (mod p), then a ≡ 0 (mod p) or b ≡ 0 (mod p).
a,b,c are positive integers if a divides a + b and b divides b+c prove a...
a,b,c are positive integers if a divides a + b and b divides b+c prove a divides a+c
(a) Prove or disprove the statement (where n is an integer): If 3n + 2 is...
(a) Prove or disprove the statement (where n is an integer): If 3n + 2 is even, then n is even. (b) Prove or disprove the statement: For irrational numbers x and y, the product xy is irrational.
Let n be a positive integer and let S be a subset of n+1 elements of...
Let n be a positive integer and let S be a subset of n+1 elements of the set {1,2,3,...,2n}.Show that (a) There exist two elements of S that are relatively prime, and (b) There exist two elements of S, one of which divides the other.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT