Question

Compute the matrix exponential eAt for the following system x' = Ax x'1 = 4x1 -...

Compute the matrix exponential eAt for the following system x' = Ax

x'1 = 4x1 - 3x2

x'2 = 2x1 - x2

eAt = _____________

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the solution to the following system by converting the system to matrix form: x'1= 2x1+4x2,...
Find the solution to the following system by converting the system to matrix form: x'1= 2x1+4x2, x1(0)=0 x'2= x1-x2, x2(0)=-2
Solve the system -2x1+4x2+5x3=-22 -4x1+4x2-3x3=-28 4x1-4x2+3x3=30 a)the initial matrix is: b)First, perform the Row Operation 1/-2R1->R1....
Solve the system -2x1+4x2+5x3=-22 -4x1+4x2-3x3=-28 4x1-4x2+3x3=30 a)the initial matrix is: b)First, perform the Row Operation 1/-2R1->R1. The resulting matrix is: c)Next perform operations +4R1+R2->R2 -4R1+R3->R3 The resulting matrix is: d) Finish simplyfying the augmented mantrix down to reduced row echelon form. The reduced matrix is: e) How many solutions does the system have? f) What are the solutions to the system? x1 = x2 = x3 =
3) Find the dual of the following LP: Max 4x1 - x2 s.t. 2x1 + 3x2...
3) Find the dual of the following LP: Max 4x1 - x2 s.t. 2x1 + 3x2 ≥ 10 x1 – x2 = 4 0.5x1 + 2x2 ≤ 20 x1 ≥ 0, x2 unconstrained Please provide an excel solution to this problem
Find the fundamental matrix solution for the system x′ = Ax where matrix A is given....
Find the fundamental matrix solution for the system x′ = Ax where matrix A is given. If an initial condition is provided, find the solution of the initial value problem using the principal matrix. A= [ 4 -13 ; 2 -6 ]. , x(o) = [ 2 ; 0 ]
Solve the system using either Gaussian elimination with back-substitution or Gauss-Jordan elimination.If the system has an...
Solve the system using either Gaussian elimination with back-substitution or Gauss-Jordan elimination.If the system has an infinite number of solutions, express x1, x2, and x3 in terms of the parameter t.) 2x1 + 3x3 = 3 4x1 - 3x2 + 7x3 = 1 8x1 - 9x2 + 15x3 = 11 (x1, x2, x3) = ?
Given a matrix system AX = B as below, where A is a 4 x 4...
Given a matrix system AX = B as below, where A is a 4 x 4 matrix as given below A: 2          1          0          0 1          2          1          0 0          2          4          1 0          0          1          3 B: 0         -1 3 -1 Solve for all 4 X values using TDMA algorithm First identify the a, d, c and b values for each row, and then find P’s and Q’s and finally determine X’s.
In the system AX=b, where A is m x n matrix and rank of A is...
In the system AX=b, where A is m x n matrix and rank of A is m, you are given n vectors and among them p vectors are linearly dependent (p > m). Please write down the procedure to reduce the number of dependent vector by 1.
Consider the following system of equations: 2x1 + 8x2 = 2 x1 + x2 = 4...
Consider the following system of equations: 2x1 + 8x2 = 2 x1 + x2 = 4 a) Express the system in the matrix form: Ax = b b) Showing all work, solve the equations for x1 and x2 using Gauss-Jordan method c) Showing all work, solve the equations for x1 and x2 using Cramer’s Rule d) Showing all work, solve the equations for x1 and x2 using the method of Matrix Inversion
The following is the mathematical model of a linear programming problem for profit: Maximize Z =...
The following is the mathematical model of a linear programming problem for profit: Maximize Z = 2X1 + 3X2 subject to: 4X1 + 9X2 ≤ 72 10X1 + 11X2 ≤ 110 17X1 + 9X2 ≤ 153 X1 , X2 ≥ 0 The constraint lines have been graphed below along with one example profit line (dashed). The decision variable X1 is used as the X axis of the graph. Which of the following gives the constraint line that cuts the X2...
Consider the following system of linear equations: 2x1−2x2+4x3 = −10 x1+x2−2x3 = 5 −2x1+x3 = −2...
Consider the following system of linear equations: 2x1−2x2+4x3 = −10 x1+x2−2x3 = 5 −2x1+x3 = −2 Let A be the coefficient matrix and X the solution matrix to the system. Solve the system by first computing A−1 and then using it to find X. You can resize a matrix (when appropriate) by clicking and dragging the bottom-right corner of the matrix.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT