Question

Let N1 be a normal subgroup of group G1, and N2 be a normal subgroup of...

Let N1 be a normal subgroup of group G1, and N2 be a normal subgroup of group G2. Use the Fundamental Homomorphism Theorem to show that

G1/N1 × G2/N2 ≃ (G1 × G2)/(N1 × N2).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let phi: G1 -> G2 be a surjective group homomorphism. Let H1 be a normal subgroup...
Let phi: G1 -> G2 be a surjective group homomorphism. Let H1 be a normal subgroup of G1 and suppose that phi(H1) = H2. Disprove that G1/H1 G2/H2. Hint: find a counterexample where phi is not injective.
Let C be a normal subgroup of the group A and let D be a normal...
Let C be a normal subgroup of the group A and let D be a normal subgroup of the group B. (a) Prove that C × D is a normal subgroup of A × B (b) Prove that the map φ : A × B → (A/C) × (B/D) given by φ((m, n)) = (mC, nD) is a group homomorphism. (c) Use the fundamental homomorphism theorem to prove that (A × B)/(C × D) ∼= (A/C) × (B/D)
Let G be a finite group, and suppose that H is normal subgroup of G. Show...
Let G be a finite group, and suppose that H is normal subgroup of G. Show that, for every g ∈ G, the order of gH in G/H must divide the order of g in G. What is the order of the coset [4]42 + 〈[6]42〉 in Z42/〈[6]42〉? Find an example to show that the order of gH in G/H does not always determine the order of g in G. That is, find an example of a group G, and...
Let G1 and G2 be isomorphic groups. Prove that if G1 has a subgroup of order...
Let G1 and G2 be isomorphic groups. Prove that if G1 has a subgroup of order n, then G2 has a subgroup of order n
Let G be a finite group and let P be a Sylow p-subgroup of G. Suppose...
Let G be a finite group and let P be a Sylow p-subgroup of G. Suppose H is a normal subgroup of G. Prove that HP/H is a Sylow p-subgroup of G/H and that H ∩ P is a Sylow p-subgroup of H. Hint: Use the Second Isomorphism theorem.
Let p be a prime. Show that a group of order pa has a normal subgroup...
Let p be a prime. Show that a group of order pa has a normal subgroup of order pb for every nonnegative integer b ≤ a.
1) Let G be a group and N be a normal subgroup. Show that if G...
1) Let G be a group and N be a normal subgroup. Show that if G is cyclic, then G/N is cyclic. Is the converse true? 2) What are the zero divisors of Z6?
Let G be a finite group and let H be a subgroup of order n. Suppose...
Let G be a finite group and let H be a subgroup of order n. Suppose that H is the only subgroup of order n. Show that H is normal in G. Hint: Consider the subgroup aHa-1 of G. Please explain in detail!
Let φ : A → B be a group homomorphism. Prove that ker φ is a...
Let φ : A → B be a group homomorphism. Prove that ker φ is a normal subgroup of A.
Let G be a finitely generated group, and let H be normal subgroup of G. Prove...
Let G be a finitely generated group, and let H be normal subgroup of G. Prove that G/H is finitely generated