Question

Given the following vector X, find a non-zero square matrix A such that AX=0: You can...

Given the following vector X, find a non-zero square matrix A such that AX=0:

You can resize a matrix (when appropriate) by clicking and dragging the bottom-right corner of the matrix.

x = [-1]

[10]

[-4]

This is a 3x1 matrix.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following system of linear equations: 2x1−2x2+4x3 = −10 x1+x2−2x3 = 5 −2x1+x3 = −2...
Consider the following system of linear equations: 2x1−2x2+4x3 = −10 x1+x2−2x3 = 5 −2x1+x3 = −2 Let A be the coefficient matrix and X the solution matrix to the system. Solve the system by first computing A−1 and then using it to find X. You can resize a matrix (when appropriate) by clicking and dragging the bottom-right corner of the matrix.
Solve the following system of linear equations: 3x2−9x3 = −3 x1−2x2+x3 = 2 x2−3x3 = 0...
Solve the following system of linear equations: 3x2−9x3 = −3 x1−2x2+x3 = 2 x2−3x3 = 0 If the system has no solution, demonstrate this by giving a row-echelon form of the augmented matrix for the system. If the system has infinitely many solutions, your answer may use expressions involving the parameters r, s, and t. You can resize a matrix (when appropriate) by clicking and dragging the bottom-right corner of the matrix.
Find the fundamental matrix solution for the system x′ = Ax where matrix A is given....
Find the fundamental matrix solution for the system x′ = Ax where matrix A is given. If an initial condition is provided, find the solution of the initial value problem using the principal matrix. A= [ 4 -13 ; 2 -6 ]. , x(o) = [ 2 ; 0 ]
4. Suppose that we have a linear system given in matrix form as Ax = b,...
4. Suppose that we have a linear system given in matrix form as Ax = b, where A is an m×n matrix, b is an m×1 column vector, and x is an n×1 column vector. Suppose also that the n × 1 vector u is a solution to this linear system. Answer parts a. and b. below. a. Suppose that the n × 1 vector h is a solution to the homogeneous linear system Ax=0. Showthenthatthevectory=u+hisasolutiontoAx=b. b. Now, suppose that...
Given a matrix system AX = B as below, where A is a 4 x 4...
Given a matrix system AX = B as below, where A is a 4 x 4 matrix as given below A: 2          1          0          0 1          2          1          0 0          2          4          1 0          0          1          3 B: 0         -1 3 -1 Solve for all 4 X values using TDMA algorithm First identify the a, d, c and b values for each row, and then find P’s and Q’s and finally determine X’s.
a) Find the steady-state vector for the transition matrix. .8 1 .2 0 x= ______ __________...
a) Find the steady-state vector for the transition matrix. .8 1 .2 0 x= ______ __________ b) Find the steady-state vector for the transition matrix. 1 7 4 7 6 7 3 7 These are fractions^ x= _____ ________
A) Find the inverse of the following square matrix. I 5 0 I I 0 10...
A) Find the inverse of the following square matrix. I 5 0 I I 0 10 I (b) Find the inverse of the following square matrix. I 4 9 I I 2 5 I c) Find the determinant of the following square matrix. I 5 0 0 I I 0 10 0 I I 0 0 4 I (d) Is the square matrix in (c) invertible? Why or why not?
(a) Find the inverse of the following square matrix. I 5 0 I I 0 10...
(a) Find the inverse of the following square matrix. I 5 0 I I 0 10 I (b) Find the inverse of the following square matrix. I 4 9 I I 2 5 I (c) Find the determinant of the following square matrix. I 5 0 0 I I 0 10 0 I I 0 0 4 I (d) Is the square matrix in (c) invertible? Why or why not?
You are given a transition matrix P. Find the steady-state distribution vector. HINT [See Example 4.]...
You are given a transition matrix P. Find the steady-state distribution vector. HINT [See Example 4.] P = 3/4 1/4 8/9 1/9 You are given a transition matrix P. Find the steady-state distribution vector. HINT [See Example 4.] P = 4/5 1/5 0 5/6 1/6 0 5/9 0 4/9
*** Write a function called reverse_diag that creates a square matrix whose elements are 0 except...
*** Write a function called reverse_diag that creates a square matrix whose elements are 0 except for 1s on the reverse diagonal from top right to bottom left. The reverse diagonal of an n-by-n matrix consists of the elements at the following indexes: (1, n), (2, n-1), (3, n-2), … (n, 1). The function takes one positive integer input argument named n, which is the size of the matrix, and returns the matrix itself as an output argument. Note that...