Question

Use Euler’s Method to obtain a five-decimal approximation of the indicated value. Carry out the recursion...

Use Euler’s Method to obtain a five-decimal approximation of the indicated value. Carry out the recursion by hand, using h = 0.1 and then using h = 0.05.

y′ = -y + x + 1, y(0) = 1. Find y(1)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use Euler's method to obtain a four-decimal approximation of the indicated value. Carry out the recursion...
Use Euler's method to obtain a four-decimal approximation of the indicated value. Carry out the recursion of (3) in Section 2.6 yn + 1 = yn + hf(xn, yn)        (3) by hand, first using h = 0.1 and then using h = 0.05. y' = 2x − 3y + 1, y(1) = 7;   y(1.2)
Use the RK4 method with h=0.1 to obtain a 4-decimal approximation of the indicated value: y'...
Use the RK4 method with h=0.1 to obtain a 4-decimal approximation of the indicated value: y' = x2 + y2, y(0) = 1; y(1.3) If you could make a table with the values up to 1.3 that is what I am looking for. I already solved the first line (F1, F2, F3, and F4). I am just unsure where to find a code/program to create a table. All I had to do was write out the work by hand for...
How would one solve this? Use the RK4 method to obtain a four decimal approximation of...
How would one solve this? Use the RK4 method to obtain a four decimal approximation of the indicated value. Use h = 0.1 , y ' = x + y^2 , y(0) = 0, find y(0.5). Thank you for your help and time!
Problem 6. Use Euler’s Method to approximate the particular solution of this initial value problem (IVP):...
Problem 6. Use Euler’s Method to approximate the particular solution of this initial value problem (IVP): dydx=√y+x satisfying the initial condition y(0)=1 on the interval [0,0.4] with h = 0.1. Round ?? to 4 decimal places.
1. Consider the initial value problem dy/dx =3cos(x^2) with y(0)=2. (a) Use two steps of Euler’s...
1. Consider the initial value problem dy/dx =3cos(x^2) with y(0)=2. (a) Use two steps of Euler’s method with h=0.5 to approximate the value of y(0.5), y(1) to 4 decimal places. b) Use four steps of Euler’s method with h=0.25, to approximate the value of y(0.25),y(0.75),y(1), to 4 decimal places.    (c) What is the difference between the two results of Euler’s method, to two decimal places?   
Use Euler’s method with h = π/4 to solve y’ = y cos(x) , y(0) =...
Use Euler’s method with h = π/4 to solve y’ = y cos(x) , y(0) = 1 on the interval [0, π] to find y(π)
For the initial value problem, Use Euler’s method with a step size of h=0.25 to find...
For the initial value problem, Use Euler’s method with a step size of h=0.25 to find approximate solution at x = 1
Use Euler's method to approximate y(0.2), where y(x) is the solution of the initial-value problem y''...
Use Euler's method to approximate y(0.2), where y(x) is the solution of the initial-value problem y'' − 4y' + 4y = 0,  y(0) = −3,  y'(0) = 1. Use h = 0.1. Find the analytic solution of the problem, and compare the actual value of y(0.2) with y2. (Round your answers to four decimal places.) y(0.2) ≈     (Euler approximation) y(0.2) = -2.3869 (exact value) I'm looking for the Euler approximation number, thanks.
Use Euler's method to approximate y(1.2), where y(x) is the solution of the initial-value problem x2y''...
Use Euler's method to approximate y(1.2), where y(x) is the solution of the initial-value problem x2y'' − 2xy' + 2y = 0,  y(1) = 9,  y'(1) = 9, where x > 0. Use h = 0.1. Find the analytic solution of the problem, and compare the actual value of y(1.2) with y2. (Round your answers to four decimal places.) y(1.2) ≈     (Euler approximation) y(1.2) =     (exact value)
6. Consider the initial value problem y' = ty^2 + y, y(0) = 0.25, with (exact)...
6. Consider the initial value problem y' = ty^2 + y, y(0) = 0.25, with (exact) solution y(t). (a) Verify that the solution of the initial value problem is y(t) = 1/(3e^(-t) − t + 1) and evaluate y(1) to at least four decimal places. (b) Use Euler’s method to approximate y(1), using a step size of h = 0.5, and evaluate the difference between y(1) and the Euler’s method approximation. (c) Use MATLAB to implement Euler’s method with each...