Question

1. a) Show that u(x, t) = (x + t) 3 is a solution of the wave equation utt = uxx.

b) What initial condition does u satisfy?

c) Plot the solution surface.

d) Using (c), discuss the difference between the conditions u(x, 0) and u(0, t).

Answer #1

Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions
:
1) u(x,0) = log (1+x^2), Ut(x,0) = 4+x
2) U(x,0) = x^3 , Ut(x,0) =sinx
(PDE)

uxx = ut - u (0<x<1, t>0),
boundary conditions: u(1,t)=cost, u(0,t)= 0
initial conditions: u(x,0)= x
i) solve this problem by using the method of separation of
variables. (Please, share the solution step by step)
ii) graphically present two terms(binomial) solutions for
u(x,1).

Suppose u(t,x) and v(t,x ) is C^2 functions defined on R^2 that
satisfy the first-order system of PDE Ut=Vx,
Vt=Ux,
A.) Show that both U and V are classical solutions to the wave
equations Utt= Uxx.
Which result from multivariable calculus do you need to justify
the conclusion.
B)Given a classical sol. u(t,x) to the wave equation, can you
construct a function v(t,x) such that u(t,x), v(t,x)
form of sol. to the first order system.

8. Find the solution of the following PDE:
utt − 9uxx = 0
u(0, t) = u(3π, t) = 0
u(x, 0) = sin(x/3)
ut (x, 0) = 4 sin(x/3) − 6 sin(x)
9. Find the solution of the following PDE:
utt − uxx = 0
u(0, t) = u(1, t) = 0
u(x, 0) = 0
ut(x, 0) = x(1 − x)
10. Find the solution of the following PDE:
(1/2t+1)ut − uxx = 0
u(0,t) = u(π,t) =...

Let a, c be positive constants and assume that a/ 2πc is a
positive integer. Consider the equation Utt +
aut = c^2Uxx , which represents a damped
version of the wave equation (telegrapher’s equation). Assuming
Dirichlet boundary conditions u(0, t) = u(1, t) = 0, on the
infinite strip 0 ≤ x ≤ 1, t ≥ 0, with initial conditions u(x, 0) =
f(x), ut(x, 0) = 0, complete the following:
(a) Find all separable solutions (of the form...

PDE
Solve using the method of characteristics
Plot the intial conditions and then solve the parial
differential equation
utt = c² uxx, -∞ < x < ∞, t > 0
u(x,0) = { 0 if x < -1 , 1-x² if -1≤ x ≤1, 0 if x > 0
ut(x,0) = 0

(PDE)
WRITE down the solutions to the ff initial boundary problem for
wave equation in the form of Fourier series :
1. Utt = Uxx ; u( t,0) = u(t,phi) = 0 ; u(0,x)=1 , Ut( (0,x) =
0
2. Utt = 4Uxx ; u( t,0) = u(t,1) = 0 ; u(0,x)=x , Ut( (0,x) =
-x

Consider the one dimensional heat equation with homogeneous
Dirichlet conditions and initial condition:
PDE : ut = k uxx, BC : u(0, t) = u(L, t) = 0, IC : u(x, 0) =
f(x)
a) Suppose k = 0.2, L = 1, and f(x) = 180x(1−x) 2 . Using the
first 10 terms in the series, plot the solution surface and enough
time snapshots to display the dynamics of the solution.
b) What happens to the solution as t →...

Solve the heat equation and find the steady state solution :
uxx=ut 0<x<1, t>0,
u(0,t)=T1, u(1,t)=T2, where T1 and T2 are
distinct constants, and u(x,0)=0

Solve the wave equation:
utt = c2uxx, 0<x<pi, t>0
u(0,t)=0, u(pi,t)=0, t>0
u(x,0) = sinx, ut(x,0) = sin2x, 0<x<pi

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 20 minutes ago

asked 20 minutes ago

asked 20 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago