Question

1. a) Show that u(x, t) = (x + t) 3 is a solution of the...

1. a) Show that u(x, t) = (x + t) 3 is a solution of the wave equation utt = uxx.

b) What initial condition does u satisfy?

c) Plot the solution surface.

d) Using (c), discuss the difference between the conditions u(x, 0) and u(0, t).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0)...
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0) = log (1+x^2), Ut(x,0) = 4+x 2) U(x,0) = x^3 , Ut(x,0) =sinx (PDE)
uxx = ut - u (0<x<1, t>0), boundary conditions: u(1,t)=cost, u(0,t)= 0 initial conditions: u(x,0)= x...
uxx = ut - u (0<x<1, t>0), boundary conditions: u(1,t)=cost, u(0,t)= 0 initial conditions: u(x,0)= x i) solve this problem by using the method of separation of variables. (Please, share the solution step by step) ii) graphically present two terms(binomial) solutions for u(x,1).
Suppose u(t,x) and v(t,x ) is C^2 functions defined on R^2 that satisfy the first-order system...
Suppose u(t,x) and v(t,x ) is C^2 functions defined on R^2 that satisfy the first-order system of PDE Ut=Vx, Vt=Ux, A.) Show that both U and V are classical solutions to the wave equations  Utt= Uxx. Which result from multivariable calculus do you need to justify the conclusion. B)Given a classical sol. u(t,x) to the wave equation, can you construct a function v(t,x) such that u(t,x), v(t,x) form of sol. to the first order system.
8. Find the solution of the following PDE: utt − 9uxx = 0 u(0, t) =...
8. Find the solution of the following PDE: utt − 9uxx = 0 u(0, t) = u(3π, t) = 0 u(x, 0) = sin(x/3) ut (x, 0) = 4 sin(x/3) − 6 sin(x) 9. Find the solution of the following PDE: utt − uxx = 0 u(0, t) = u(1, t) = 0 u(x, 0) = 0 ut(x, 0) = x(1 − x) 10. Find the solution of the following PDE: (1/2t+1)ut − uxx = 0 u(0,t) = u(π,t) =...
Let a, c be positive constants and assume that a/ 2πc is a positive integer. Consider...
Let a, c be positive constants and assume that a/ 2πc is a positive integer. Consider the equation Utt + aut = c^2Uxx , which represents a damped version of the wave equation (telegrapher’s equation). Assuming Dirichlet boundary conditions u(0, t) = u(1, t) = 0, on the infinite strip 0 ≤ x ≤ 1, t ≥ 0, with initial conditions u(x, 0) = f(x), ut(x, 0) = 0, complete the following: (a) Find all separable solutions (of the form...
PDE Solve using the method of characteristics Plot the intial conditions and then solve the parial...
PDE Solve using the method of characteristics Plot the intial conditions and then solve the parial differential equation utt = c² uxx, -∞ < x < ∞, t > 0 u(x,0) = { 0 if x < -1 , 1-x² if -1≤ x ≤1, 0 if x > 0 ut(x,0) = 0
(PDE) WRITE down the solutions to the ff initial boundary problem for wave equation in the...
(PDE) WRITE down the solutions to the ff initial boundary problem for wave equation in the form of Fourier series : 1. Utt = Uxx ; u( t,0) = u(t,phi) = 0 ; u(0,x)=1 , Ut( (0,x) = 0 2. Utt = 4Uxx ; u( t,0) = u(t,1) = 0 ; u(0,x)=x , Ut( (0,x) = -x
Consider the one dimensional heat equation with homogeneous Dirichlet conditions and initial condition: PDE : ut...
Consider the one dimensional heat equation with homogeneous Dirichlet conditions and initial condition: PDE : ut = k uxx, BC : u(0, t) = u(L, t) = 0, IC : u(x, 0) = f(x) a) Suppose k = 0.2, L = 1, and f(x) = 180x(1−x) 2 . Using the first 10 terms in the series, plot the solution surface and enough time snapshots to display the dynamics of the solution. b) What happens to the solution as t →...
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2,...
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2, where T1 and T2 are distinct constants, and u(x,0)=0
Solve the wave equation: utt = c2uxx, 0<x<pi, t>0 u(0,t)=0, u(pi,t)=0, t>0 u(x,0) = sinx, ut(x,0)...
Solve the wave equation: utt = c2uxx, 0<x<pi, t>0 u(0,t)=0, u(pi,t)=0, t>0 u(x,0) = sinx, ut(x,0) = sin2x, 0<x<pi