Matlab: Solve the following set of simultaneous equations. Remember, the system cannot be solved if the determinant of the coefficient matrix is zero. Use if statements to only display the results if the determinant is not zero
a) 3x1 + 2x2 + 4x3 = 5
2x1 + 5x2 + 3x3 = 17
7x1 + 2x2 + 2x3 = 11
b) x – y – z = 0
30x + 40y = 12
30x + 50z = 12
c) 4x + 2y + 2z + 4w = 0
3x + y + 4z + 7w = 1
2x + y + z + 2w = 1
3x + y + z + 3w = 4
%%% Matlab code
clc;
close all;
clear all;
%%%(a)
disp('a')
A=[3 2 4;2 5 3;7 2 2];
b=[5 17 11];
if det(A)==0
disp('Determinant is zero hence solution is not possible')
else
x=A/b;
fprintf('Solution is \n');
x
end
%%%(b)
disp('b')
A=[1 -1 -1;30 40 0;30 0 50];
b=[0 12 12];
if det(A)==0
disp('Determinant is zero hence solution is not possible')
else
x=A/b;
fprintf('Solution is \n');
x
end
%%%(c)
disp('c')
A=[4 2 2 4;3 1 4 7;2 1 1 2;3 1 1 3];
b=[0 1 1 4];
if det(A)==0
disp('Determinant is zero hence solution is not possible')
else
x=A/b;
fprintf('Solution is \n');
x
end
OUTPUT:
a
Solution is
x =
0.2138
0.2943
0.2092
b
Solution is
x =
-0.0833
1.6667
2.0833
c
Determinant is zero hence solution is not possible
>>
Get Answers For Free
Most questions answered within 1 hours.