Question

Prove that Z ×{ 0 , 1 , 2 , 3 } is countably infinite by...

Prove that

Z

×{

0

,

1

,

2

,

3

}

is countably infinite by finding a bijection

f

:

Z

Z

×{

0

,

1

,

2

,

3

}

. (

Hint:

Consider the

division algorithm

Homework Answers

Answer #1


If you need any further clarification regarding this problem feel free to comment below

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that if X and Y are disjoint countably infinite sets then X ∪ Y is...
Prove that if X and Y are disjoint countably infinite sets then X ∪ Y is countably infinity (can you please show the bijection from N->XUY clearly)
Prove that a subset of a countably infinite set is finite or countably infinite.
Prove that a subset of a countably infinite set is finite or countably infinite.
a) Prove that the union between two countably infinite sets is a countably infinite set. b)...
a) Prove that the union between two countably infinite sets is a countably infinite set. b) Would the statement above hold if we instead started with an infinite amount of countably infinite sets? _________________________________________________ Thank you in advance!
Suppose A is an infinite set and B is countable and disjoint from A. Prove that...
Suppose A is an infinite set and B is countable and disjoint from A. Prove that the union A U B is equivalent to A by defining a bijection f: A ----> A U B. Thus, adding a countably infinite set to an infinite set does not increase its size.
Prove directly (using only the definition of the countably infinite set, without the use of any...
Prove directly (using only the definition of the countably infinite set, without the use of any theo-rems) that the union of a finite set and a countably infinite set is countably infinite.   
(a) Let A and B be countably infinite sets. Decide whether the following are true for...
(a) Let A and B be countably infinite sets. Decide whether the following are true for all, some (but not all), or no such sets, and give reasons for your answers.  A ∪B is countably infinite  A ∩B is countably infinite  A\B is countably infinite, where A ∖ B = { x | x ∈ A ∧ X ∉ B }. (b) Let F be the set of all total unary functions f : N → N...
Problem 3 Countable and Uncountable Sets (a) Show that there are uncountably infinite many real numbers...
Problem 3 Countable and Uncountable Sets (a) Show that there are uncountably infinite many real numbers in the interval (0, 1). (Hint: Prove this by contradiction. Specifically, (i) assume that there are countably infinite real numbers in (0, 1) and denote them as x1, x2, x3, · · · ; (ii) express each real number x1 between 0 and 1 in decimal expansion; (iii) construct a number y whose digits are either 1 or 2. Can you find a way...
1. Prove that {2k+1: k ∈ Z}={2k+3 : k ∈ Z} 2. Prove/disprove: if p and...
1. Prove that {2k+1: k ∈ Z}={2k+3 : k ∈ Z} 2. Prove/disprove: if p and q are prime numbers and p < q, then 2p + q^2 is odd (Hint: all prime numbers greater than 2 are odd)
Prove that limz->∞ f(z) = ∞ if and only if limz->0 1/ (f(1/z)) = 0.
Prove that limz->∞ f(z) = ∞ if and only if limz->0 1/ (f(1/z)) = 0.
Let G be an infinite simple p-group. Prove that Z(G) = 1.
Let G be an infinite simple p-group. Prove that Z(G) = 1.