Question

3. (50) Let f(x) = x^4 + 2. Find a factorization of f(x) into irreducible polynomials...

3. (50) Let f(x) = x^4 + 2. Find a factorization of f(x) into irreducible polynomials in each of the following rings, justifying your answers briefly:

(i) Z3 [x];

(ii) Q[x] (this can be done easily using an appropriate theorem);

(iii) R[x] (hints: you may find it helpful to write γ = 2^(1/4), the positive real fourth root of 2, and to consider factors of the form x^2 + a*x + 2^(1/2);

(iv) C[x] (you may leave your answer in exponential form).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Q7) Factorise the polynomial f(x) = x3 − 2x2 + 2x − 1 into irreducible polynomials...
Q7) Factorise the polynomial f(x) = x3 − 2x2 + 2x − 1 into irreducible polynomials in Z5[x], i.e. represent f(x) as a product of irreducible polynomials in Z5[x]. Demonstrate that the polynomials you obtained are irreducible. I think i manged to factorise this polynomial. I found a factor to be 1 so i divided the polynomial by (x-1) as its a linear factor. So i get the form (x3 − 2x2 + 2x − 1) = (x2-x+1)*(x-1) which is...
Let f(x) be a cubic polynomial of the form x^3 +ax^2 +bx+c with real coefficients. 1....
Let f(x) be a cubic polynomial of the form x^3 +ax^2 +bx+c with real coefficients. 1. Deduce that either f(x) factors in R[x] as the product of three degree-one polynomials, or f(x) factors in R[x] as the product of a degree-one polynomial and an irreducible degree-two polynomial. 2.Deduce that either f(x) has three real roots (counting multiplicities) or f(x) has one real root and two non-real (complex) roots that are complex conjugates of each other.
Is f(x)=x^5+√6 x^4+2x^2-(3/2)x irreducible in R[x], why or why not? Is g(x)=x^3+x+1 irreducible in Z5[x] why...
Is f(x)=x^5+√6 x^4+2x^2-(3/2)x irreducible in R[x], why or why not? Is g(x)=x^3+x+1 irreducible in Z5[x] why or why not?
Let f (x) = −x^4− 4x^3. (i) Find the intervals of increase/decrease of f . (ii)...
Let f (x) = −x^4− 4x^3. (i) Find the intervals of increase/decrease of f . (ii) Find the local extrema of f (values and locations). (iii) Determine the intervals of concavity. (iv) Find the location of the inflection points of f. (v) Sketch the graph of f
Consider the polynomial f(x) = x ^4 + x ^3 + x ^2 + x +...
Consider the polynomial f(x) = x ^4 + x ^3 + x ^2 + x + 1 with roots in GF(256). Let b be a root of f(x), i.e., f(b) = 0. The other roots are b^ 2 , b^4 , b^8 . e) Write b 4 as a combination of smaller powers of b. Prove that b 5 = 1. f) Given that b 5 = 1 and the factorization of 255, determine r such that b = α...
Given the polynomial f(x) = 3x^4 -7x^3 -3x^2 + 17x + 10, and given the zeros...
Given the polynomial f(x) = 3x^4 -7x^3 -3x^2 + 17x + 10, and given the zeros of -1 and -2/3,   A). Write the polynomial in linear and irreducible quadratic factors B). Write the linear factorization of the polynomial.
Find the complete factorization of P(x) = x^3-64 The answer I got was (x-4)(2-2i√3)(2+2i√3) but I'm...
Find the complete factorization of P(x) = x^3-64 The answer I got was (x-4)(2-2i√3)(2+2i√3) but I'm not sure if this is right!
Let f(x) = x^3 + x - 4 a. Show that f(x) has a root on...
Let f(x) = x^3 + x - 4 a. Show that f(x) has a root on the interval [1,4] b. Find the first three iterations of the bisection method on f on this interval c. Find a bound for the number of iterations needed of bisection to approximate the root to within 10^-4
1. If f(x) = ∫10/x t^3 dt then: f′(x)= ? and f′(6)= ? 2. If f(x)=∫x^2/1...
1. If f(x) = ∫10/x t^3 dt then: f′(x)= ? and f′(6)= ? 2. If f(x)=∫x^2/1 t^3dt t then f′(x)= ? 3. If f(x)=∫x3/−4 sqrt(t^2+2)dt then f′(x)= ? 4. Use part I of the Fundamental Theorem of Calculus to find the derivative of h(x)=∫sin(x)/−2 (cos(t^3)+t)dt. what is h′(x)= ? 5. Find the derivative of the following function: F(x)=∫1/sqrt(x) s^2/ (1+ 5s^4) ds using the appropriate form of the Fundamental Theorem of Calculus. F′(x)= ? 6. Find the definitive integral: ∫8/5...
Suppose f(x) is a differentiable function such that f(2)=3 and f'(x) is less than or equal...
Suppose f(x) is a differentiable function such that f(2)=3 and f'(x) is less than or equal to 4 for all x in the interval [0,5]. Which statement below is true about the function f(x)? The Mean Value Theorem implies that f(4)=11. The Mean Value Theorem implies that f(5)=15. None of the other statements is correct. The Intermediate Value Theorem guarantees that there exists a root of the function f(x) between 0 and 5. The Intermediate Value Theorem implies that f(5)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT