Question

Use the 10 properties of the vector spaces to solve the following statement The set of...

Use the 10 properties of the vector spaces to solve the following statement

The set of all the pairs of real numbers (x, y) with the operations
(x, y) + (x', y') = (x+x'+1,y + y' + 1) and k(x,y) =(kx,ky)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Q 1 Determine whether the following are real vector spaces. a) The set C with the...
Q 1 Determine whether the following are real vector spaces. a) The set C with the usual addition of complex numbers and multiplication by R ⊂ C. b) The set R2 with the two operations + and · defined by (x1, y1) + (x2, y2) = (x1 + x2 + 1, y1 + y2 + 1), r · (x1, y1) = (rx1, ry1)
Linear Algebra-- Subspaces of Vector Spaces Determine whether the set W is a subspace of R^3...
Linear Algebra-- Subspaces of Vector Spaces Determine whether the set W is a subspace of R^3 with the standard operations. Justify your answer. (a): W={(0,x2,x3): x2 and x3 are real numbers} (b): W={(a, a-3b, b): a and b are real numbers}
Consider the set of all ordered pairs of real numbers with standard vector addition but with...
Consider the set of all ordered pairs of real numbers with standard vector addition but with scalar multiplication defined by  k(x,y)=(k^2x,k^2y). I know this violates (alpha + beta)x = alphax + betax, but I'm not for sure how to figure that out? How would I figure out which axioms it violates?
Are the following vector space and why? 1.The set V of all ordered pairs (x, y)...
Are the following vector space and why? 1.The set V of all ordered pairs (x, y) with the addition of R2, but scalar multiplication a(x, y) = (x, y) for all a in R. 2. The set V of all 2 × 2 matrices whose entries sum to 0; operations of M22.
We have learned that we can consider spaces of matrices, polynomials or functions as vector spaces....
We have learned that we can consider spaces of matrices, polynomials or functions as vector spaces. For the following examples, use the definition of subspace to determine whether the set in question is a subspace or not (for the given vector space), and why. 1. The set M1 of 2×2 matrices with real entries such that all entries of their diagonal are equal. That is, all 2 × 2 matrices of the form: A = a b c a 2....
Let V be the set of all ordered pairs of real numbers. Consider the following addition...
Let V be the set of all ordered pairs of real numbers. Consider the following addition and scalar multiplication operations V. Let u = (u1, u2) and v = (v1, v2). • u ⊕ v = (u1 + v1 + 1, u2 + v2 + ) • ku = (ku1 + k − 1, ku2 + k − 1) Show that V is not a vector space.
3. Closure Properties (a) Using that vector spaces are closed under scalar multiplication, explain why if...
3. Closure Properties (a) Using that vector spaces are closed under scalar multiplication, explain why if any nonzero vector from R2 or R3 is in a vector space V, then an entire line’s worth of vectors are in V. (b) Why isn’t closure under vector addition enough to make the same statement? 4. Subspaces and Spans: The span of a set of vectors from Rn is always a subspace of Rn. This is relevant to the problems below because the...
4. Which of the follows are vector spaces? Prove or disprove. (a) The set {x =...
4. Which of the follows are vector spaces? Prove or disprove. (a) The set {x = αz | α ∈ R, z = (4, 6)T }. (b) The set of all 3 × 3 matrices which have all negative elements
Let V be the set of all ordered pairs of real numbers. Consider the following addition...
Let V be the set of all ordered pairs of real numbers. Consider the following addition and scalar multiplication operations V. Let u = (u1, u2) and v = (v1, v2). • u ⊕ v = (u1 + v1 + 1, u2 + v2 + ) • ku = (ku1 + k − 1, ku2 + k − 1) 1)Show that the zero vector is 0 = (−1, −1). 2)Find the additive inverse −u for u = (u1, u2). Note:...
Prove or disprove the following statements. Remember to disprove a statement you have to show that...
Prove or disprove the following statements. Remember to disprove a statement you have to show that the statement is false. Equivalently, you can prove that the negation of the statement is true. Clearly state it, if a statement is True or False. In your proof, you can use ”obvious facts” and simple theorems that we have proved previously in lecture. (a) For all real numbers x and y, “if x and y are irrational, then x+y is irrational”. (b) For...