Question

A 200 gallon tank initially has 100 gallons of a salt solution that contains 5 lbs...

A 200 gallon tank initially has 100 gallons of a salt solution that contains 5 lbs of salt. A salt solution is pumped into the tank at a rate of 4 gallons per minute with a concentration of 1 lb of salt per gallon. The well-mixed solution is pumped out of the tank at a rate of 2 gallons per minute. How much salt will be in the tank after 30 minutes? Round to one decimal place.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 110 gallon tank initially contains 5 lbs salt dissolved in 60 gallons of water. Brine...
A 110 gallon tank initially contains 5 lbs salt dissolved in 60 gallons of water. Brine containing 1 lb salt per gallon begins to flow into the tank at the rate of 3 gal/min and the well-mixed solution is drawn off at the rate of 1 gal/min. How much salt is in the tank when it is about to overflow? (Round your answer to the nearest integer.)
A 2000 gallon tank initially contains a mixture of 750 gallons of water and 100 gallons...
A 2000 gallon tank initially contains a mixture of 750 gallons of water and 100 gallons of salt. Water is added at a rate of 8 gallons per minute, and salt is added at a rate of 2 gallons per minute. At the same time, a well mixed solution of "brine" is exiting at a rate of 5 gallons per minute. What percentage of the mixture is salt when the tank is full?
Using differential equation: A 200- gallon tank initially contains 40 gallons of brine in which 10...
Using differential equation: A 200- gallon tank initially contains 40 gallons of brine in which 10 pounds of salt have been dissolved. Starting at t=0 , brine containing 5 pounds of salt per gallon flows into the tank at rate of 6 gallons per minutes. At the same time, the well-stirred mixture flows out of the tank at the slower rate of 4 gallons per minute. a)How much salt is in the tank at the end of t minutes? b)...
A 200-gallon tank is currently half full of water that contains 30 pounds of salt. A...
A 200-gallon tank is currently half full of water that contains 30 pounds of salt. A solution containing 3 pounds of salt per gallon enters the tank at a rate of 5 gallons per minute, and the well-stirred mixture is withdrawn from the tank at a rate of 5 gallons per minute. How many pounds of salt are in the tank 10 minutes later?
A large tank is filled with 80 gallons of fluid in which 2 pounds of salt...
A large tank is filled with 80 gallons of fluid in which 2 pounds of salt are dissolved. Brine containing 1/2 pound of salt per gallon is pumped into the tank at a rate of 3 gal/min. The well-mixed solution is then pumped out at the same rate of 3 gal/min. Find the concentration of salt in the tank after 30 minutes.
A tank contains 70 lb of salt dissolved in 200 gallons of water. A brine solution...
A tank contains 70 lb of salt dissolved in 200 gallons of water. A brine solution is pumped into the tank at a rate of 2 gal/min; it mixes with the solution there, and then the mixture is pumped out at a rate of 2 gal/min. Determine A(t), the amount of salt in the tank at time t, if the concentration of salt in the inflow is variable and given by cin(t) = 2 + sin(t/4) lb/gal.
3. A tank initially contains a solution of 10 lbs of salt dissolved in 60 gallons...
3. A tank initially contains a solution of 10 lbs of salt dissolved in 60 gallons of water. At time t(0) = 0, water that contains 1/2 lb of salt per gallon is added tot he tank at a rate of 6 gal/min, and the resulting solution leaves the tank at the same rate. (Trench: Sec 4.3, 9) (a) What is the initial condition for the IVP? (b) Write a differential equation to describe the rate of change dQ/dt in...
A tank contains 30 gallons of brine solution containing 10 lb of salt. Another brine solution...
A tank contains 30 gallons of brine solution containing 10 lb of salt. Another brine solution of concentration of 3 lb/gallon is poured into the tank at the rate of 2 gallons/min. The well stirred solution in the tank is drained out at the rate of 2 gallons/min. Let the amount of salt in the tank at time ? be ?(?). Write the differential equation for A(t) and solve it.
initially, a large tank with a capacity of 250 gallons contains 125 gallons of clean water....
initially, a large tank with a capacity of 250 gallons contains 125 gallons of clean water. A saline solution with a concentration of 4 pounds per gallon flows into the tank at a rate of 20 gallons per minute. the solution mixes perfectly well while drawing at a rate of 10 gallons per minute. Find: 1) the amount of salt in the tank at the time it fills up (in pounds) 2) the rate at which the salt comes out...
Consider a 400-gallon capacity tank of water that contains 200 gallons of water in which 10...
Consider a 400-gallon capacity tank of water that contains 200 gallons of water in which 10 pounds of salt are dissolved. Suppose that water with a salt concentration of 2 pounds per gallon enters the tank at a rate of 6 gallons per minute, is well-stirred, and the mixture leaves the tank at 9 gallons per minute. Set up and solve the initial value problem to get the amount of salt as a function of time. Use this function to...