Question

let f(z)=|z|² show that f is differential only at zero

let f(z)=|z|²
show that f is differential only at zero

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Show the following: a) Let there be Y with the cumulative distribution function F(y). Let F(Y)=Z....
Show the following: a) Let there be Y with the cumulative distribution function F(y). Let F(Y)=Z. Show that Z~U(0,1) for F(y). b) Let X~U(0,1), and let Y := -ln(X). Show that Y~exp(1)
1. Let a, b ∈ Z. Define f : Z → Z by f(n) = an...
1. Let a, b ∈ Z. Define f : Z → Z by f(n) = an + b. Prove that f is one to one if and only if a does not equal 0.
Let n ∈ Z. Show that 2 | (n4 − 7) if and only if 4...
Let n ∈ Z. Show that 2 | (n4 − 7) if and only if 4 | (n2 + 3).
Consider the differential equation:  . Let y = f(x) be the particular solution to the differential equation...
Consider the differential equation:  . Let y = f(x) be the particular solution to the differential equation with initial condition, f(0) = -1. Part (a) Find  . Show or explain your work, do not just give an answer.
1.Using only the definition of uniform continuity of a function, show that f(z) = z^2 is...
1.Using only the definition of uniform continuity of a function, show that f(z) = z^2 is uniformly continuous on the disk {z : |z| < 2}. 2. Describe the image of the circle |z-3| = 1 under the mapping w = f(z) = 5-2z. Be sure to show that your description is correct. Please show full explaination.
Let f : Z → Z be a ring isomorphism. Prove that f must be the...
Let f : Z → Z be a ring isomorphism. Prove that f must be the identity map. Must this still hold true if we only assume f : Z → Z is a group isomorphism? Prove your answer.
Let X, Y and Z be sets. Let f : X → Y and g :...
Let X, Y and Z be sets. Let f : X → Y and g : Y → Z functions. (a) (3 Pts.) Show that if g ◦ f is an injective function, then f is an injective function. (b) (2 Pts.) Find examples of sets X, Y and Z and functions f : X → Y and g : Y → Z such that g ◦ f is injective but g is not injective. (c) (3 Pts.) Show that...
Given a metric space Z and F⊆X⊆Z define F is relatively closed in X. Show, F...
Given a metric space Z and F⊆X⊆Z define F is relatively closed in X. Show, F is relatively closed in X if and only if there is a closed set C⊆Z such that F=C∩X.
Given a metric space Z and F⊆X⊆Z define F is relatively closed in X. Show, F...
Given a metric space Z and F⊆X⊆Z define F is relatively closed in X. Show, F is relatively closed in X if and only if there is a closed set C⊆Z such that F=C∩X.
Let F(x,y,z) = yzi + xzj + (xy+2z)k show that vector field F is conservative by...
Let F(x,y,z) = yzi + xzj + (xy+2z)k show that vector field F is conservative by finding a function f such that and use that to evaluate where C is any path from (1,0,-2) to (4,6,3)