Question

Let Z_2 [x] be the ring of all polynomials with coefficients in Z_2. List the elements...

Let Z_2 [x] be the ring of all polynomials with coefficients in Z_2. List the elements of the field Z_2 [x]/〈x^2+x+1〉, and make an addition and multiplication table for the field. For simplicity, denote the coset f(x)+〈x^2+x+1〉 by (f(x)) ̅.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let R[x] be the set of all polynomials (in the variable x) with real coefficients. Show...
Let R[x] be the set of all polynomials (in the variable x) with real coefficients. Show that this is a ring under ordinary addition and multiplication of polynomials. What are the units of R[x] ? I need a legible, detailed explaination
Let Z[x] be the ring of polynomials with integer coefficients. Find U(Z[x]), the set of all...
Let Z[x] be the ring of polynomials with integer coefficients. Find U(Z[x]), the set of all units of Z[x].
In the ring R[x] of polynomials with real coefficients, show that A = {f 2 R[x]...
In the ring R[x] of polynomials with real coefficients, show that A = {f 2 R[x] : f(0) = f(1) = 0} is an ideal.
Let P(R) denote the family of all polynomials (in a single variable x) with real coefficients....
Let P(R) denote the family of all polynomials (in a single variable x) with real coefficients. We have seen that with the operations of pointwise addition and multiplication by scalars, P(R) is a vector space over R. Consider the 2 linear maps D, I : P(R) to P(R), where D is differentiation and I is anti-differentiation. In detail, for a polynomial p = a0+a1x1+...+anxn, we have D(p) = a1+2a2x+....+nanxn-1 and I(p) = a0x+(a1/2)x2+...+(an/(n+1))xn+1. a. Show that D composed with I...
Let P4 denote the space of polynomials of degree less than 4 with real coefficients. Show...
Let P4 denote the space of polynomials of degree less than 4 with real coefficients. Show that the standard operations of addition of polynomials, and multiplication of polynomials by a scalar, give P4 the structure of a vector space (over the real numbers R). Your answer should include verification of each of the eight vector space axioms (you may assume the two closure axioms hold for this problem).
Let P2 denote the vector space of polynomials in x with real coefficients having degree at...
Let P2 denote the vector space of polynomials in x with real coefficients having degree at most 2. Let W be a subspace of P2 given by the span of {x2−x+6,−x2+2x−1,x+5}. Show that W is a proper subspace of P2.
8. List all irreducible polynomials with binary coefficients of degree 4 or less. (Hint: produce a...
8. List all irreducible polynomials with binary coefficients of degree 4 or less. (Hint: produce a times table that shows the minimum number of products needed.) Show these as binary numbers (omitting the indeterminant) and as decimal numbers (interpreting the binary number into decimal). Is 23 a prime polynomial in this field? 9. Interpreting these decimal numbers into coefficients of polynomials with binary coefficients, what is the product of 11 and 10 modulo 31 in GF(2^4) over P = 31?...
Let P be the vector space of all polynomials in x with real coefficients. Does P...
Let P be the vector space of all polynomials in x with real coefficients. Does P have a basis? Prove your answer.
Let R be a commutative ring with unity. Let A consist of all elements in A[x]...
Let R be a commutative ring with unity. Let A consist of all elements in A[x] whose constant term is equal to 0. Show that A is a prime ideal of A[x]
Let F be a field and let a(x), b(x) be polynomials in F[x]. Let S be...
Let F be a field and let a(x), b(x) be polynomials in F[x]. Let S be the set of all linear combinations of a(x) and b(x). Let d(x) be the monic polynomial of smallest degree in S. Prove that d(x) divides a(x).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT