Question

Common functions In a formula, spreadsheets provide you a large range of common functions to use....

Common functions

In a formula, spreadsheets provide you a large range of common functions to use. Read the documentation - or experiment - to learn the right syntax.

Here are some examples to try (where you know the answer.

Remember that "e" (=2.718281828 ...) is a special transcendental number in math and science - it is the base of natural logarithms and the function that is its own derivative and therefore is used to calculate exponential growth.

Pi is another special number (3.1415...). Spreadsheets provide a function to generate Pi whenever you need it!

To answer these questions - open a spreadsheet and experiment!

Group of answer choices

10 to the power 3

      [ Choose ]            = log(1000)            = log(2,32)            = radians(45)            = 3^10            = log(e)            = pi()            = exp(2)            = rad(45)            = Pi            = pi            = log(32, 2)            = ln(1000)            = 5^2            exp(1)            = 2^5            = e^1            = 10^3            log(exp(1))            = e^2      

log base 10 of 1000

      [ Choose ]            = log(1000)            = log(2,32)            = radians(45)            = 3^10            = log(e)            = pi()            = exp(2)            = rad(45)            = Pi            = pi            = log(32, 2)            = ln(1000)            = 5^2            exp(1)            = 2^5            = e^1            = 10^3            log(exp(1))            = e^2      

natural log of 1000

      [ Choose ]            = log(1000)            = log(2,32)            = radians(45)            = 3^10            = log(e)            = pi()            = exp(2)            = rad(45)            = Pi            = pi            = log(32, 2)            = ln(1000)            = 5^2            exp(1)            = 2^5            = e^1            = 10^3            log(exp(1))            = e^2      

2 to the power 5

      [ Choose ]            = log(1000)            = log(2,32)            = radians(45)            = 3^10            = log(e)            = pi()            = exp(2)            = rad(45)            = Pi            = pi            = log(32, 2)            = ln(1000)            = 5^2            exp(1)            = 2^5            = e^1            = 10^3            log(exp(1))            = e^2      

log base 2 of 32

      [ Choose ]            = log(1000)            = log(2,32)            = radians(45)            = 3^10            = log(e)            = pi()            = exp(2)            = rad(45)            = Pi            = pi            = log(32, 2)            = ln(1000)            = 5^2            exp(1)            = 2^5            = e^1            = 10^3            log(exp(1))            = e^2      

e to the power 2

      [ Choose ]            = log(1000)            = log(2,32)            = radians(45)            = 3^10            = log(e)            = pi()            = exp(2)            = rad(45)            = Pi            = pi            = log(32, 2)            = ln(1000)            = 5^2            exp(1)            = 2^5            = e^1            = 10^3            log(exp(1))            = e^2      

log base 10 of e

      [ Choose ]            = log(1000)            = log(2,32)            = radians(45)            = 3^10            = log(e)            = pi()            = exp(2)            = rad(45)            = Pi            = pi            = log(32, 2)            = ln(1000)            = 5^2            exp(1)            = 2^5            = e^1            = 10^3            log(exp(1))            = e^2      

e to the power 1

      [ Choose ]            = log(1000)            = log(2,32)            = radians(45)            = 3^10            = log(e)            = pi()            = exp(2)            = rad(45)            = Pi            = pi            = log(32, 2)            = ln(1000)            = 5^2            exp(1)            = 2^5            = e^1            = 10^3            log(exp(1))            = e^2      

Pi = 3.141592654 ... .

      [ Choose ]            = log(1000)            = log(2,32)            = radians(45)            = 3^10            = log(e)            = pi()            = exp(2)            = rad(45)            = Pi            = pi            = log(32, 2)            = ln(1000)            = 5^2            exp(1)            = 2^5            = e^1            = 10^3            log(exp(1))            = e^2      

convert the angle 45° to radians

      [ Choose ]            = log(1000)            = log(2,32)            = radians(45)            = 3^10            = log(e)            = pi()            = exp(2)            = rad(45)            = Pi            = pi            = log(32, 2)            = ln(1000)            = 5^2            exp(1)            = 2^5            = e^1            = 10^3            log(exp(1))            = e^2      

Homework Answers

Answer #1

Correct answers are given below:

10 to the power 3

      =10^3

log base 10 of 1000

   =log(1000)

natural log of 1000

   =ln(1000)

2 to the power 5

      =2^5

log base 2 of 32

   =log(32,2)

e to the power 2

   exp(2)

log base 10 of e

         log(exp(1))  

e to the power 1

      exp(1)  

Pi = 3.141592654 ... .

pi()        

convert the angle 45° to radians

= radians(45)

Hope this was helpful. Please do leave a positive rating if you liked this answer. Thanks and have a good day!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given the following list of functions, determine the order of growth of each using big-Theta notation...
Given the following list of functions, determine the order of growth of each using big-Theta notation and put all the functions in order from slowest-growing to fastest-growing. Be sure to put functions of equal growth rate on the same level. Unless otherwise noted, you can assume all logarithms are base-2. 6nlog(2n)+8n 4n2log(log(8n))+8n2+n 500 n3+7nlog(n2) + 4n 2n+2n+1 log(4n2)+3n+1 12 8log(24n)+10 8n2log(5n2)+7n+200 4log(n3)+1000 100log(16n)log(n6)+23 8nlog(log(n4))+6n+32 9log(log(8n))
You must use Excel commands/functions on all of your calculations in order to earn full credit....
You must use Excel commands/functions on all of your calculations in order to earn full credit. Complete the following questions: 1) How many 6-character passwords can be generated using one letter from a to h and 5 numbers from 1 to 9? 2) How many ways can you choose a complete dinner from a menu that allows you to pick from 2 salads, 3 entrees, and 2 desserts? 3) How many ways can you pick a committee of 16 students...
1.Let f and g be two functions such that f(n)/g(n) converges to a positive value less...
1.Let f and g be two functions such that f(n)/g(n) converges to a positive value less than 1 as n tends to infinity. Which of the following is necessarily true? Select one: a. g(n)=Ω(f(n)) b. f(n)=Ω(g(n)) c. f(n)=O(g(n)) d. g(n)=O(f(n)) e. All of the answers 2. If T(n)=n+23 log(2n) where the base of the log is 2, then which of the following is true: Select one: a. T(n)=θ(n^2) b. T(n)=θ(n) c. T(n)=θ(n^3) d. T(n)=θ(3^n) 3. Let f and g be...
Indicator Low pH color Transition pH range High pH color Thymol blue (first transtion) Red 1.2...
Indicator Low pH color Transition pH range High pH color Thymol blue (first transtion) Red 1.2 - 2.8 Yellow Methyl red Red 4.4 - 6.2 Yellow Bromothymol blue Yellow 6.0 - 7.6 Blue Thymol blue (second transition) Yellow 8.0 - 9.6 Blue Phenolphthalien Colorless 8.3 - 10.0 Fuchsia 1. Select all of the following statements that are true about the universal indicator used in this experiment A.The universal indicator is a single chemical compound. B. At pH 1.2 the indicator...
Important Instructions: (1) λ is typed as lambda. (2) Use hyperbolic trig functions cosh(x) and sinh(x)...
Important Instructions: (1) λ is typed as lambda. (2) Use hyperbolic trig functions cosh(x) and sinh(x) instead of ex and e−x. (3) Write the functions alphabetically, so that if the solutions involve cos and sin, your answer would be Acos(x)+Bsin(x). (4) For polynomials use arbitrary constants in alphabetical order starting with highest power of x, for example, Ax2+Bx. (5) Write differential equations with leading term positive, so X′′−2X=0 rather than −X′′+2X=0. (6) Finally you need to simplify arbitrary constants. For...
Using a categorical variable from your sample, choose a category of interest, which you will use...
Using a categorical variable from your sample, choose a category of interest, which you will use to build a confidence interval for the proportion. Hint: Recall, we compute the sample proportion, p, as: = ௑ ௡ . First, describe how you determined that you could use the normal distribution to approximate the distribution of the variable. Then, state the point estimate and the population parameter that you are making an inference about. Based on the point estimate, you will build...
Complete this in C++ and explain what is being done. 1      Introduction The functions in the...
Complete this in C++ and explain what is being done. 1      Introduction The functions in the following subsections can all go in one big file called pointerpractice.cpp. 1.1     Basics Write a function, int square 1(int∗ p), that takes a pointer to an int and returns the square of the int that it points to. Write a function, void square 2(int∗ p), that takes a pointer to an int and replaces that int (the one pointed to by p) with its...
Match terms to their definitions. Write the corresponding letters on the blanks. Not all terms will...
Match terms to their definitions. Write the corresponding letters on the blanks. Not all terms will be used. 1. the best appearing side of a piece of wood or the side that is exposed when installed a. backing b. eased edge 2. a wall finish applied partway up the wall from the floor c. face 3. a building product made by compressing wood fibers into sheet form d. gypsum board 4. an edge of lumber whose sharp corners have been...
1)The use of the military in international disaster relief must be consistent with this principle: Equality...
1)The use of the military in international disaster relief must be consistent with this principle: Equality Impartiality Egalitarianism All of the above 2) Facilitating a tabletop exercise is an example of preparedness. True False 3) Which is not a part of the process for mass fatality management Retrieve bodies Cremate or bury bodies Coordinate with law enforcement Publicly release names of the deceased All of the above 4) The __________ is a key accomplishment by the UN that contains targets...
Chapter 17: Wall Finish Matching Match terms to their definitions. Write the corresponding letters on the...
Chapter 17: Wall Finish Matching Match terms to their definitions. Write the corresponding letters on the blanks. Not all terms will be used. Chapter 17: Wall Finish Matching Match terms to their definitions. Write the corresponding letters on the blanks. Not all terms will be used. 1. the best appearing side of a piece of wood or the side that is exposed when installed a. backing b. eased edge 2. a wall finish applied partway up the wall from the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT