Question

Let P be a 2 x 2 stochastic matrix. Prove that there exists a 2 x...

Let P be a 2 x 2 stochastic matrix. Prove that there exists a 2 x 1 state matrix X with nonnegative entries such that P X = X. Hint: First prove that there exists X. I then proved that x1 and x2 had to be the same sign to finish off the proof

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let (pij ) be a stochastic matrix and {Xn|n ≥ 0} be an S-valued stochastic process...
Let (pij ) be a stochastic matrix and {Xn|n ≥ 0} be an S-valued stochastic process with finite dimensional distributions given by P(X0 = i0, X1 = i1, · · · , Xn = in) = P(X0 = i0)pi0i1 · · · pin−1in , n ≥ 0, i0, · · · , in ∈ S. Then {Xn|n ≥ 0} is a Markov chain with transition probability matrix (pij ). Let {Xn|n ≥ 0} be an S-valued Markov chain. Then the...
Let P be a stochastic matrix. Show that λ=1 is an eigenvalue of P. What is...
Let P be a stochastic matrix. Show that λ=1 is an eigenvalue of P. What is the associated eigenvector?
Let p be an odd prime, and let x = [(p−1)/2]!. Prove that x^2 ≡ (−1)^(p+1)/2...
Let p be an odd prime, and let x = [(p−1)/2]!. Prove that x^2 ≡ (−1)^(p+1)/2 (mod p). (You will need Wilson’s theorem, (p−1)! ≡−1 (mod p).) This gives another proof that if p ≡ 1 (mod 4), then x^2 ≡ −1 (mod p) has a solution.
(a) It is given that a random variable X such that P(X =−1) =P(X = 1)...
(a) It is given that a random variable X such that P(X =−1) =P(X = 1) = 1/4, P(X = 0) = 1/2. Find the mgf of X, mX(t) (b) Let X1 and X2 be two iid random varibles such that P(Xi =1)=P(Xi =−1)=1/2, i=1,2. Use the mgfs to prove that X and Y =(X1+X2)/2 have the same distribution
Let x1, x2, x3 be real numbers. The mean, x of these three numbers is defined...
Let x1, x2, x3 be real numbers. The mean, x of these three numbers is defined to be x = (x1 + x2 + x3)/3 . Prove that there exists xi with 1 ≤ i ≤ 3 such that xi ≤ x.
Prove the following: Theorem. Let X be a set and {Xi ⊆ X : i ∈...
Prove the following: Theorem. Let X be a set and {Xi ⊆ X : i ∈ I} be a partition of X. Then R = { (x1, x2) ∈ X × X : ∃i ∈ I,(x1 ∈ Xi) ∧ (x2 ∈ Xi) } is an equivalence relation on X.
(1) Let x be a rational number and y be an irrational. Prove that 2(y-x) is...
(1) Let x be a rational number and y be an irrational. Prove that 2(y-x) is irrational a) Briefly explain which proof method may be most appropriate to prove this statement. For example either contradiction, contraposition or direct proof b) State how to start the proof and then complete the proof
I am having problems with a probability/stochastic process question regarding discrete markov chains. I get the...
I am having problems with a probability/stochastic process question regarding discrete markov chains. I get the intuition behind the questions, but I am unsure on how to prove them. P is a finite transition matrix. Question: Let P have a finite state space of size N + 1. Suppose that P is irreducible. Let «i» and «j » be a fixed and different states. Prove that Pij(n) > 0 for some n ≤ N. Prove that Pii(n) > 0 for...
Let a > 0 and f be continuous on [-a, a]. Suppose that f'(x) exists and...
Let a > 0 and f be continuous on [-a, a]. Suppose that f'(x) exists and f'(x)<= 1 for all x2 ㅌ (-a, a). If f(a) = a and f(-a) =-a. Show that f(0) = 0. Hint: Consider the two cases f(0) < 0 and f(0) > 0. Use mean value theorem to prove that these are impossible cases.
Let p be a prime that is congruent to 3 mod 4. Prove that there is...
Let p be a prime that is congruent to 3 mod 4. Prove that there is no solution to the congruence x2≡−1 modp. (Hint: what would be the order of x?)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT