Question

Use a truth table to determine whether the two statements are equivalent. ~p->~q, q->p Construct a...

Use a truth table to determine whether the two statements are equivalent.

~p->~q, q->p

Construct a truth table for ~p->~q

Construct a truth table for q->p


Homework Answers

Answer #1

Answer:)

We see that the truth table for the first statement is given by::

p q
0 0 1
0 1 0

1

0

1
1 1 1

Similarly we see that the table for is :

p q
0 1 0 1 1
0 1 1 0 0
1 0 0 1 1
1 0 1 0 1

Hence, we see that the truth tables are the same, and hence the two logic statements are equivalent.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use a truth table to determine whether the following argument is valid. p →q ∨ ∼r...
Use a truth table to determine whether the following argument is valid. p →q ∨ ∼r q → p ∧ r ∴ p →r
Use two truth tables to show that the pair of compound statements are equivalent. p ∨...
Use two truth tables to show that the pair of compound statements are equivalent. p ∨ (q ∧ ~p); p ∨ q p q p ∨ (q ∧ ~p) T T ? ? ? ? ? T F ? ? ? ? ? F T ? ? ? ? ? F F ? ? ? ? ? p ∨ q T ? T T ? F F ? T F ? F
Let P and Q be statements: (a) Use truth tables to show that ∼ (P or...
Let P and Q be statements: (a) Use truth tables to show that ∼ (P or Q) = (∼ P) and (∼ Q). (b) Show that ∼ (P and Q) is logically equivalent to (∼ P) or (∼ Q). (c) Summarize (in words) what we have learned from parts a and b.
are they logically equivalent (show how) truth table or in word:: a) p —> ( q...
are they logically equivalent (show how) truth table or in word:: a) p —> ( q —> r ) and ( p -> q) —> r b) p^ (q v r ) and ( p ^ q) v ( p ^ r )
Use the FULL truth-table method to determine whether the following argument form is valid or invalid....
Use the FULL truth-table method to determine whether the following argument form is valid or invalid. Show the complete table (with a column of ‘T’s and ‘F’s under every operator); state explicitly whether the argument form is valid or invalid; and clearly identify counterexample rows, if there are any. (p ⋅ q) ⊃ ~(q ∨ p), p ⊃ (p ⊃ q) /∴ q ≡ p Use the FULL truth-table method to determine whether the following argument form is valid or...
Write a C++ program to construct the truth table of P || !(Q && R)
Write a C++ program to construct the truth table of P || !(Q && R)
Use a truth table to determine if the following is a logical equivalence:   ( q →...
Use a truth table to determine if the following is a logical equivalence:   ( q → ( ¬ q → ( p ∧ r ) ) ) ≡ ( ¬ p ∨ ¬ r )
Construct a truth table to determine whether the following expression is a tautology, contradiction, or a...
Construct a truth table to determine whether the following expression is a tautology, contradiction, or a contingency. (r ʌ (p ® q)) ↔ (r ʌ ((r ® p) ® q)) Use the Laws of Logic to prove the following statement: r ʌ (p ® q) Û r ʌ ((r ® p) ® q) [Hint: Start from the RHS, and use substitution, De Morgan, distributive & idempotent] Based on (a) and/or (b), can the following statement be true? (p ® q)...
For three statements P, Q and R, use truth tables to verify the following. (a) (P...
For three statements P, Q and R, use truth tables to verify the following. (a) (P ⇒ Q) ∧ (P ⇒ R) ≡ P ⇒ (Q ∧ R). (c) (P ⇒ Q) ∨ (P ⇒ R) ≡ P ⇒ (Q ∨ R). (e) (P ⇒ Q) ∧ (Q ⇒ R) ≡ P ⇒ R.
Construct an indirect truth table for this argument. ∼A • ∼(R ∨ Q)   /   B ≡ ∼Q   //  ...
Construct an indirect truth table for this argument. ∼A • ∼(R ∨ Q)   /   B ≡ ∼Q   //   B ⊃ J From your indirect truth table what can you conclude? The argument is valid and the value of the letter R is True. The argument is valid and the value of the letter R is False. The argument is invalid and the value of the letter R is True. The argument is invalid and the value of the letter R is False.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT