Question

Use Newton's method to derive root of f(x) = sin(x) + 1. What is the order...

Use Newton's method to derive root of f(x) = sin(x) + 1. What is the order of convergence?

Homework Answers

Answer #1

Any doubt in any step then comment below.. i will help you.  

Here order of convergence is near 1 ..because roots having multiplicity 2 .. so thts why its order goes to 1...

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use Newton's method to approximate a root of f(x) = 10x2 + 34x -14 if the...
Use Newton's method to approximate a root of f(x) = 10x2 + 34x -14 if the initial approximation is xo = 1 x1 = x2 = x3 = x4 =
Utilize Newton's Method to estimate the root of 3 sin x - x = 0 for...
Utilize Newton's Method to estimate the root of 3 sin x - x = 0 for x > 0 correct to the sixth decimal places. Show all work below. (Hint: start with x1 = 2)
Use Newton's method to find the absolute maximum value of the function f(x) = 8x sin(x),...
Use Newton's method to find the absolute maximum value of the function f(x) = 8x sin(x), 0 ≤ x ≤ π correct to SIX decimal places.
Let f(x)=sin(x)+x^3-2. Use the secant method to find a root of f(x) using initial guesses x0=1...
Let f(x)=sin(x)+x^3-2. Use the secant method to find a root of f(x) using initial guesses x0=1 and x1=4. Continue until two consecutive x values agree in the first 2 decimal places.
Use Newton's method to approximate the root of the equation to four decimal places. Start with...
Use Newton's method to approximate the root of the equation to four decimal places. Start with x 0 =-1 , and show all work f(x) = x ^ 5 + 10x + 3 Sketch a picture to illustrate one situation where Newton's method would fail . Assume the function is non-constant differentiable , and defined for all real numbers
Let f(x) = -x3 - cos x and p0 = -1 . Use Newton's method to...
Let f(x) = -x3 - cos x and p0 = -1 . Use Newton's method to find p1 and the Secant method to find p2
Use Newton's method to find the value of x so that x*sin(2x)=3 x0 = 5 Submit...
Use Newton's method to find the value of x so that x*sin(2x)=3 x0 = 5 Submit your answer with four decimal places.
Find the root of the function f(x) = 8 - 4.5 ( x - sin x...
Find the root of the function f(x) = 8 - 4.5 ( x - sin x ) in the interval [2,3]. Exhibit a numerical solution using Bisection method.
Find the root of f(x) = exp(x)sin(x) - xcos(x) by the Newton’s method starting with an...
Find the root of f(x) = exp(x)sin(x) - xcos(x) by the Newton’s method starting with an initial value of xo = 1.0. Solve by using Newton’method until satisfying the tolerance limits of the followings; i. tolerance = 0.01 ii. tolerance = 0.001 iii. tolerance= 0.0001 Comment on the results!
: Consider f(x) = 3 sin(x2) − x. 1. Use Newton’s Method and initial value x0...
: Consider f(x) = 3 sin(x2) − x. 1. Use Newton’s Method and initial value x0 = −2 to approximate a negative root of f(x) up to 4 decimal places. 2. Consider the region bounded by f(x) and the x-axis over the the interval [r, 0] where r is the answer in the previous part. Find the volume of the solid obtain by rotating the region about the y-axis. Round to 4 decimal places.