Question

Prove that the ring of integers of Q (a number field) is Z

Prove that the ring of integers of Q (a number field) is Z

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Is the ring Z Noetherian? Prove your answer. Is the ring Z Artinian? Prove your answer.
Is the ring Z Noetherian? Prove your answer. Is the ring Z Artinian? Prove your answer.
Is the set of integers a ring? A field? Why or why not.
Is the set of integers a ring? A field? Why or why not.
Let Z be the integers. (a) Let C1 = {(a, a) | a ∈ Z}. Prove...
Let Z be the integers. (a) Let C1 = {(a, a) | a ∈ Z}. Prove that C1 is a subgroup of Z × Z. (b) Let n ≥ 2 be an integer, and let Cn = {(a, b) | a ≡ b( mod n)}. Prove that Cn is a subgroup of Z × Z. (c) Prove that every proper subgroup of Z × Z that contains C1 has the form Cn for some positive integer n.
Let f : Z → Z be a ring isomorphism. Prove that f must be the...
Let f : Z → Z be a ring isomorphism. Prove that f must be the identity map. Must this still hold true if we only assume f : Z → Z is a group isomorphism? Prove your answer.
Prove or disprove that there do not exist z, y, and z are positive integers such...
Prove or disprove that there do not exist z, y, and z are positive integers such that X7 - Y5 = Z4
Prove that the only ring homomorphism from Q (rational numbers) to Q (rational numbers) is the...
Prove that the only ring homomorphism from Q (rational numbers) to Q (rational numbers) is the identity map.
Prove that the ring Z[x]/(n), where n ∈ Z, is isomorphic to Zn[x].
Prove that the ring Z[x]/(n), where n ∈ Z, is isomorphic to Zn[x].
1. Consider the set (Z,+,x) of integers with the usual addition (+) and multiplication (x) operations....
1. Consider the set (Z,+,x) of integers with the usual addition (+) and multiplication (x) operations. Which of the following are true of this set with those operations? Select all that are true. Note that the extra "Axioms of Ring" of Definition 5.6 apply to specific types of Rings, shown in Definition 5.7. - Z is a ring - Z is a commutative ring - Z is a domain - Z is an integral domain - Z is a field...
Suppose that a ring ? is actually a field, like Q or Z17. Show that: (a)...
Suppose that a ring ? is actually a field, like Q or Z17. Show that: (a) The only two ideals possible are <0> and <1>. (b) ? is a principal ideal ring.
find jacobson radical of polynomials and prove every finite divison ring is field
find jacobson radical of polynomials and prove every finite divison ring is field