Question

Follow the steps below to use the method of reduction of order to find a second...

Follow the steps below to use the method of reduction of order to find a second solution y2 given the following differential equation and y1, which solves the given homogeneous equation:

xy" + y' = 0; y1 = ln(x)

Step #1: Let y2 = uy1, for u = u(x), and find y'2 and y"2.

Step #2: Plug y'2 and y"2 into the differential equation and simplify.

Step #3: Use w = u' to transform your previous answer into a linear first order differential equation in w.

Step #4: Solve for w and thus u' in your previous answer.

Step #5: Solve for u from your previous equation for u'.

Step #6: Solve for y2 using our definition in the first step, (use c1 = -1 and c2 = 0, which are assumed to be the constants of integration).

Step #7: Verify that y2 is a solution to the original given differential equation, and check that W[y1, y2] does not equal zero in I := R.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the METHOD of REDUCTION OF ORDER to find the general solution of the differential equation...
Use the METHOD of REDUCTION OF ORDER to find the general solution of the differential equation y"-4y=2 given that y1=e^-2x is a solution for the associated differential equation. When solving, use y=y1u and w=u'.
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx (5) as instructed, to find a second solution y2(x). y'' + 100y = 0; y1 = cos 10x I've gotten to the point all the way to where y2 = u y1, but my integral is wrong for some reason This was my answer y2= c1((sin(20x)+20x)cos10x)/40 + c2(cos(10x))
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx     (5) as instructed, to find a second solution y2(x). y'' + 36y = 0;    y1 = cos(6x) y2 = 2) The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order,...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order, to find a second solution dx **Please do not solve this via the formula--please use the REDUCTION METHOD ONLY. y2(x)= ?? Given: y'' + 2y' + y = 0;    y1 = xe−x
The indicated function y1(x) is a solution of the associated homogeneous differential equation. Use the method...
The indicated function y1(x) is a solution of the associated homogeneous differential equation. Use the method of reduction of order to find a second solution y2(x) and a particular solution of the given nonhomoegeneous equation. y'' − y'  = e^x y1 = e^x
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx        (5) as instructed, to find a second solution y2(x). y'' + 64y = 0;    y1 = cos(8x) y2 =
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) ∫(e(−∫P(x) dx))/y12(x)dx (5) as instructed, to find a second solution y2(x).4x2y'' + y = 0; y1 = x1/2 ln(x) y2 = ?
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x)       dx (5) as instructed, to find a second solution y2(x). x2y'' -11xy' + 36y = 0; y1 = x6 y2 =
Use the method of variation of parameters to determine the general solution of the given differential...
Use the method of variation of parameters to determine the general solution of the given differential equation. y′′′−y′=3t Use C1, C2, C3, ... for the constants of integration.
Solve the following differential equation by variation of parameters. Fully evaluate all integrals. y′′+9y=sec(3x). a. Find...
Solve the following differential equation by variation of parameters. Fully evaluate all integrals. y′′+9y=sec(3x). a. Find the most general solution to the associated homogeneous differential equation. Use c1 and c2 in your answer to denote arbitrary constants, and enter them as c1 and c2. b. Find a particular solution to the nonhomogeneous differential equation y′′+9y=sec(3x). c. Find the most general solution to the original nonhomogeneous differential equation. Use c1 and c2 in your answer to denote arbitrary constants.