Question

real analysis (a) prove that e^x is continuous at x=0 (b) using (a) prove that it...

real analysis

(a) prove that e^x is continuous at x=0
(b) using (a) prove that it is continuous for all x
(c) prove that lnx is continuous for positive x

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that there is a positive real number x such that x2 - 2 = 0....
Prove that there is a positive real number x such that x2 - 2 = 0. What you'll need: Definition of a real number, definition of positive, definition of zero, and definition of Cauchy.
Prove the following using the specified technique: (a) Prove by contrapositive that for any two real...
Prove the following using the specified technique: (a) Prove by contrapositive that for any two real numbers,x and y,if x is rational and y is irrational then x+y is also irrational. (b) Prove by contradiction that for any positive two real numbers,x and y,if x·y≥100 then either x≥10 or y≥10. Please write nicely or type.
28.8 Let f(x)=x^2 for x rational and f(x) = 0 for x irrational. (a) Prove f...
28.8 Let f(x)=x^2 for x rational and f(x) = 0 for x irrational. (a) Prove f is continuous at x = 0. (b) Prove f is discontinuous at all x not= 0. (c) Prove f is differentiable at x = 0.Warning: You cannot simply claim f '(x)=2x.
prove that f(x) = sin(x^2) is continuous, positive and decreasing
prove that f(x) = sin(x^2) is continuous, positive and decreasing
Prove that the integral from 0 to Infinity (sin^2(x)e^-x)dx converges using the comparison test.
Prove that the integral from 0 to Infinity (sin^2(x)e^-x)dx converges using the comparison test.
Suppose that X is continuous random variable with PDF f(x) and CDF F(x). (a) Prove that...
Suppose that X is continuous random variable with PDF f(x) and CDF F(x). (a) Prove that if f(x) > 0 only on a single (possibly infinite) interval of the real numbers then F(x) is a strictly increasing function of x over that interval. [Hint: Try proof by contradiction]. (b) Under the conditions described in part (a), find and identify the distribution of Y = F(x).
Let f(x) be a function that is continuous for all real numbers and assume all the...
Let f(x) be a function that is continuous for all real numbers and assume all the intercepts of f, f' , and f” are given below. Use the information to a) summarize any and all asymptotes, critical numbers, local mins/maxs, PIPs, and inflection points, b) then graph y = f(x) labeling all the pertinent features from part a. f(0) = 1, f(2) = 0, f(4) = 1 f ' (2) = 0, f' (x) < 0 on (−∞, 2), and...
Solve the IVP x''+ax=b+e-ct, x(0)=x'(0)=0, a, b, c all positive parameters. Does your solution approach a...
Solve the IVP x''+ax=b+e-ct, x(0)=x'(0)=0, a, b, c all positive parameters. Does your solution approach a constant as t goes to infinity? If not, why not?
Are the following sets groups: (a) continuous real functions on [0, 1] with operation addition; (b)...
Are the following sets groups: (a) continuous real functions on [0, 1] with operation addition; (b) continuous real functions on [0, 1] with operation multiplication.
Let E = {x + iy : x = 0, or x > 0, y =...
Let E = {x + iy : x = 0, or x > 0, y = sin(1/x)}. Prove that the set E is connected, but that is not path-connected or connected by trajectories and consider B = {z ∈ C : |z| = 1}. prove ( is easy to see it but how to prove it ) the following questions ¿is B open?¿is B closed?¿connected?¿compact?