Question

Let Q be the set {(a, b) ∶ a ∈ Z and b ∈ N}. Define...

Let Q be the set {(a, b) ∶ a ∈ Z and b ∈ N}.

Define addition on Q by (a, b) + (c, d) = (ad + bc, bd) and define multiplication by (a, b) ⋅ (c, d) = (ac, bd).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let Q be the set {(a, b) ∶ a ∈ Z and b ∈ N}. Let...
Let Q be the set {(a, b) ∶ a ∈ Z and b ∈ N}. Let (a, b), (c, d) ∈ Q. Show that (a, b) ∼ (c, d) if and only if ad − bc = 0 defines an equivalence relation on Q.
Let B be the set of all binary strings of length 2; i.e. B={ (0,0), (0,1),...
Let B be the set of all binary strings of length 2; i.e. B={ (0,0), (0,1), (1,0), (1,1)}. Define the addition and multiplication as coordinate-wise addition and multiplication modulo 2. It turns out that B becomes a Boolean algebra under those two operations. Show that B under addition is a group but B under multiplication is not a group. Coordinate-wise addition and multiplication modulo 2 means (a,b)+(c,d)=(a+c, b+d), (a,b)(c,d)=(ac, bd), in addition to the fact that 1+1=0.
Recall from class that we defined the set of integers by defining the equivalence relation ∼...
Recall from class that we defined the set of integers by defining the equivalence relation ∼ on N × N by (a, b) ∼ (c, d) =⇒ a + d = c + b, and then took the integers to be equivalence classes for this relation, i.e. Z = [(a, b)]∼ | (a, b) ∈ N × N . We then proceeded to define 0Z = [(0, 0)]∼, 1Z = [(1, 0)]∼, − [(a, b)]∼ = [(b, a)]∼, [(a, b)]∼...
1. Let a ∈ Z and b ∈ N. Then there exist q ∈ Z and...
1. Let a ∈ Z and b ∈ N. Then there exist q ∈ Z and r ∈ Z with 0 ≤ r < b so that a = bq + r. 2. Let a ∈ Z and b ∈ N. If there exist q, q′ ∈ Z and r, r′ ∈ Z with 0 ≤ r, r′ < b so that a = bq + r = bq′ + r ′ , then q ′ = q and r...
Define a binary operation on R 2 − {(0, 0)} by (a, b) · (c, d)...
Define a binary operation on R 2 − {(0, 0)} by (a, b) · (c, d) = (ac − bd, ad + bc). Prove that (R 2 − {0}, ·) is an abelian group. (You do not need to prove that the operation is closed.)
Write functions multiply_complex and divide_complex to implement the operations of multiplication and division of complex numbers...
Write functions multiply_complex and divide_complex to implement the operations of multiplication and division of complex numbers defined as follows: (a+bi)×(c+di) = (ac−bd) + (ad+bc)i (a+bi) / (c + di) = (ac+bd) / (c2 + d2) + (bc−ad i) / (c2 + d2) Program: C
Let A, B, and C be sets in a universal set U. We are given n(U)...
Let A, B, and C be sets in a universal set U. We are given n(U) = 63, n(A) = 33, n(B) = 34, n(C) = 28, n(A ∩ B) = 15, n(A ∩ C) = 17, n(B ∩ C) = 14, n(A ∩ B ∩ CC) = 9. Find the following values. (a) n(AC ∩ B ∩ C) (b) n(A ∩ BC ∩ CC)
1. Let a, b ∈ Z. Define f : Z → Z by f(n) = an...
1. Let a, b ∈ Z. Define f : Z → Z by f(n) = an + b. Prove that f is one to one if and only if a does not equal 0.
Let G be a group containing 6 elements a, b, c, d, e, and f. Under...
Let G be a group containing 6 elements a, b, c, d, e, and f. Under the group operation called the multiplication, we know that ad=c, bd=f, and f^2=bc=e. Which element is cf? How about af? Now find a^2. Justify your answer. Hint: Find the identify first. Then figure out cb.  
Define a relation on N x N by (a, b)R(c, d) iff ad=bc a. Show that...
Define a relation on N x N by (a, b)R(c, d) iff ad=bc a. Show that R is an equivalence relation. b. Find the equivalence class E(1, 2)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT