Question

2. Consider the line integral I C F · d r, where the vector field F...

2. Consider the line integral I C F · d r, where the vector field F = x(cos(x 2 ) + y)i + 2y 3 (e y sin3 y + x 3/2 )j and C is the closed curve in the first quadrant consisting of the curve y = 1 − x 3 and the coordinate axes x = 0 and y = 0, taken anticlockwise.

(a) Use Green’s theorem to express the line integral in terms of a double integral over the region R enclosed by C.

(b) Calculate the double integral using a repeated integral with respect to y first and x second.

(c) Now reverse the order of integration and evaluate the double integral using a repeated integral with respect to x first and y second.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Evaluate the line integral C F · dr, where C is given by the vector function...
Evaluate the line integral C F · dr, where C is given by the vector function r(t). F(x, y) = xy i + 9y2 j r(t) = 16t6 i + t4 j, 0 ≤ t ≤ 1
Evaluate the given integral by changing to polar coordinates. R (5x − y) dA, where R...
Evaluate the given integral by changing to polar coordinates. R (5x − y) dA, where R is the region in the first quadrant enclosed by the circle x2 + y2 = 16 and the lines x = 0 and y = x
Use Divergence theorem to evaluate surface integral S F ·n dA where S is the surface...
Use Divergence theorem to evaluate surface integral S F ·n dA where S is the surface of the solid enclosed by the tetrahedron formed by the coordinate planes x = 0, y = 0 and z = 0 and the plane 2x + 2y + z = 6 and F = 2x i − x^2 j + (z − 2x + 2y) k.
Use Green’s theorem to evaluate the integral: ∫(-x^2y)dx +(xy^2)dy where C is the boundary of the...
Use Green’s theorem to evaluate the integral: ∫(-x^2y)dx +(xy^2)dy where C is the boundary of the region enclosed by y= sqrt(9 − x^2) and the x-axis, traversed in the counterclockwise direction.
Evaluate the line integral ∫F⋅d r∫CF⋅d r where F=〈sinx,−3cosy,5xz〉 and C is the path given by...
Evaluate the line integral ∫F⋅d r∫CF⋅d r where F=〈sinx,−3cosy,5xz〉 and C is the path given by r(t)=(-2t^3,-3t^2,3t) for 0≤t≤1
For each vector field F~ (x, y) = hP(x, y), Q(x, y)i, find a function f(x,...
For each vector field F~ (x, y) = hP(x, y), Q(x, y)i, find a function f(x, y) such that F~ (x, y) = ∇f(x, y) = h ∂f ∂x , ∂f ∂y i by integrating P and Q with respect to the appropriate variables and combining answers. Then use that potential function to directly calculate the given line integral (via the Fundamental Theorem of Line Integrals): a) F~ 1(x, y) = hx 2 , y2 i Z C F~ 1...
Calculate double integral D f(x, y) dA as an iterated integral, where f(x, y) = −4x...
Calculate double integral D f(x, y) dA as an iterated integral, where f(x, y) = −4x 2y 3 + 4y and D is the region bounded by y = −x − 3 and y = 3 − x 2 .
(1 point) Evaluate the line integral ∫F⋅d r∫CF⋅d r where F=〈-5sinx,-2cosy,10xz〉 and C is the path...
(1 point) Evaluate the line integral ∫F⋅d r∫CF⋅d r where F=〈-5sinx,-2cosy,10xz〉 and C is the path given by r(t)=(2t^3,-3t^2,-2t) for 0≤t≤10≤t≤1 ∫F⋅d r=
using the change of variable x =u/v, y=v evaluate "double integral(x^2+2y^2)dxdy: R is the region in...
using the change of variable x =u/v, y=v evaluate "double integral(x^2+2y^2)dxdy: R is the region in the first quadrant bounded by the graphs of xy=1, xy=2, y=x, y=2x
evaluate the double integral where f(x,y) = 6x^3*y - 4y^2 and D is the region bounded...
evaluate the double integral where f(x,y) = 6x^3*y - 4y^2 and D is the region bounded by the curve y = -x^2 and the line x + y = -2