Question

In this problem we consider an equation in differential form ???+???=0. (8(1+ln(?)))??+(−(5?4))??=0 Find ??=(0) correct answer...

In this problem we consider an equation in differential form ???+???=0.

(8(1+ln(?)))??+(−(5?4))??=0

Find

??=(0) correct answer

??= (0) correct answer

If the problem is exact find a function ?(?,?) whose differential, ??(?,?) is the left hand side of the differential equation. That is, level curves ?(?,?)=?, give implicit general solutions to the differential equation. If the equation is not exact, enter NE otherwise find ?(?,?) (note you are not asked to enter ?)

?(?,?)=8x+xlnx-x (incorrect)

Homework Answers

Answer #1

In this problem we consider an equation in differential form ???+???=0.

(8(1+ln(?)))??+(−(5?4))??=0

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In this problem we consider an equation in differential form ???+???=0 The equation (6?^(1/?)+4?^3?^−3)??+(6?^2?^−2+4)??=0 in differential...
In this problem we consider an equation in differential form ???+???=0 The equation (6?^(1/?)+4?^3?^−3)??+(6?^2?^−2+4)??=0 in differential form ?˜??+?˜??=0 is not exact. Indeed, we have ?˜?−?˜?/M=______ is a function of ? alone. Namely we have μ(y)= Multiplying the original equation by the integrating factor we obtain a new equation ???+???=0 ?=____ ?=_____ Which is exact since ??=______ ??=_______ are equal. This problem is exact. Therefore an implicit general solution can be written in the form  ?(?,?)=?F where ?(?,?)=__________
A) In this problem we consider an equation in differential form ???+???=0Mdx+Ndy=0. The equation (5?^4?+4cos(2?)?^−4)??+(5?^5−3?^−4)??=0 in...
A) In this problem we consider an equation in differential form ???+???=0Mdx+Ndy=0. The equation (5?^4?+4cos(2?)?^−4)??+(5?^5−3?^−4)??=0 in differential form ?˜??+?˜??=0 is not exact. Indeed, we have My-Mx= ________ 5x^4-4(4)cos(2x)*y^(-5)-25x^4 (My-Mn)/M=_____ -4/y in function y alone. ?(?)= _____y^4 Multiplying the original equation by the integrating factor we obtain a new equation ???+???=0 where M=____ N=_____ which is exact since My=_____ Nx=______ This problem is exact. Therefore an implicit general solution can be written in the form  ?(?,?)=? where ?(?,?)=_________ Finally find the value...
Solve below differential equation d2ydx2+2dydx+3y=2sin2x coefficients of final answer/s should be exact. Ie radical/fraction form Find...
Solve below differential equation d2ydx2+2dydx+3y=2sin2x coefficients of final answer/s should be exact. Ie radical/fraction form Find the complementary solution yc Find the particular integral yp Find general solution y(x) Find the particular solution yp(x)
(1 point) In this problem we consider an equation in differential form Mdx+Ndy=0Mdx+Ndy=0.The equation (4e−2y−(20x4y5e−x+2e−xsin(x)))dx+(−(20x5y4e−x+8e−2y))dy=0(4e−2y−(20x4y5e−x+2e−xsin(x)))dx+(−(20x5y4e−x+8e−2y))dy=0 in...
(1 point) In this problem we consider an equation in differential form Mdx+Ndy=0Mdx+Ndy=0.The equation (4e−2y−(20x4y5e−x+2e−xsin(x)))dx+(−(20x5y4e−x+8e−2y))dy=0(4e−2y−(20x4y5e−x+2e−xsin(x)))dx+(−(20x5y4e−x+8e−2y))dy=0 in differential form M˜dx+N˜dy=0M~dx+N~dy=0 is not exact. Indeed, we have M˜y−N˜x=
Consider the following initial value problem. y′ + 5y  = { 0 t  ≤  2 10...
Consider the following initial value problem. y′ + 5y  = { 0 t  ≤  2 10 2  ≤  t  <  7 0 7  ≤  t  <  ∞ y(0)  =  5 (a) Find the Laplace transform of the right hand side of the above differential equation. (b) Let y(t) denote the solution to the above differential equation, and let Y((s) denote the Laplace transform of y(t). Find Y(s). (c) By taking the inverse Laplace transform of your answer to (b), the...
Important Instructions: (1) λ is typed as lambda. (2) Use hyperbolic trig functions cosh(x) and sinh(x)...
Important Instructions: (1) λ is typed as lambda. (2) Use hyperbolic trig functions cosh(x) and sinh(x) instead of ex and e−x. (3) Write the functions alphabetically, so that if the solutions involve cos and sin, your answer would be Acos(x)+Bsin(x). (4) For polynomials use arbitrary constants in alphabetical order starting with highest power of x, for example, Ax2+Bx. (5) Write differential equations with leading term positive, so X′′−2X=0 rather than −X′′+2X=0. (6) Finally you need to simplify arbitrary constants. For...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT