Question

Prove that if k is odd and G is a k-regular (k − 1)-edge-connected graph, then...

Prove that if k is odd and G is a k-regular (k − 1)-edge-connected graph, then G has a perfect matching.

Homework Answers

Answer #1

Note that number of vertices in G must be even, otherwise a straight forward counter example is .

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Proof: Let G be a k-connected k-regular graph. Show that, for any edge e, G has...
Proof: Let G be a k-connected k-regular graph. Show that, for any edge e, G has a perfect matching M such that e ε M. Please show full detailed proof. Thank you in advance!
Prove that if G is a connected graph with exactly 4 vertices of odd degree, there...
Prove that if G is a connected graph with exactly 4 vertices of odd degree, there exist two trails in G such that each edge is in exactly one trail. Find a graph with 4 vertices of odd degree that’s not connected for which this isn’t true.
Let ? be a connected graph with at least one edge. (a) Prove that each vertex...
Let ? be a connected graph with at least one edge. (a) Prove that each vertex of ? is saturated by some maximum matching in ?. (b) Prove or disprove the following: Every edge of ? is in some maximum matching of ?.
Let G be a graph where every vertex has odd degree, and G has a perfect...
Let G be a graph where every vertex has odd degree, and G has a perfect matching. Prove that if M is a perfect matching of G, then every bridge of G is in M. The Proof for this question already on Chegg is wrong
A K-regular graph G is a graph such that deg(v) = K for all vertices v...
A K-regular graph G is a graph such that deg(v) = K for all vertices v in G. For example, c_9 is a 2-regular graph, because every vertex has degree 2. For some K greater than or equal to 2, neatly draw a simple K-regular graph that has a bridge. If it is impossible, prove why.
Prove or disprove the following: (a) Every 3-regular planar graph has a 3-coloring. (b) If ?=(?,?)...
Prove or disprove the following: (a) Every 3-regular planar graph has a 3-coloring. (b) If ?=(?,?) is a 3-regular graph and there exists a perfect matching of ?, then there exists a set of edges A⊆E such that each component of G′=(V,A) is a cycle
(a) Let L be a minimum edge-cut in a connected graph G with at least two...
(a) Let L be a minimum edge-cut in a connected graph G with at least two vertices. Prove that G − L has exactly two components. (b) Let G an eulerian graph. Prove that λ(G) is even.
GRAPH THEORY: Let G be a graph which can be decomposed into Hamilton cycles. Prove that...
GRAPH THEORY: Let G be a graph which can be decomposed into Hamilton cycles. Prove that G must be k-regular, and that k must be even. Prove that if G has an even number of vertices, then the edge chromatic number of G is Δ(G)=k.
Graph G is a connected planar graph with 1 face. If G is finite, prove that...
Graph G is a connected planar graph with 1 face. If G is finite, prove that there is a vertex with degree 1.
Let G be a connected simple graph with n vertices and m edges. Prove that G...
Let G be a connected simple graph with n vertices and m edges. Prove that G contains at least m−n+ 1 different subgraphs which are polygons (=circuits). Note: Different polygons can have edges in common. For instance, a square with a diagonal edge has three different polygons (the square and two different triangles) even though every pair of polygons have at least one edge in common.