Question

Let C = column matrix [1 2 3 1] and D = row matrix[−1 2 1...

Let C = column matrix [1 2 3 1] and D = row matrix[−1 2 1 4] . Prove that (CD)^10 is the same as C(DC)^9D and do the calculation by hand.

Homework Answers

Answer #1

Evaluate both the terms separately and then from the result obtained establish the equality.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let Aequals=left bracket Start 2 By 2 Matrix 1st Row 1st Column 1 2nd Column 2...
Let Aequals=left bracket Start 2 By 2 Matrix 1st Row 1st Column 1 2nd Column 2 2nd Row 1st Column 8 2nd Column 18 EndMatrix right bracket 1 2 8 18 ​, Bold b 1b1equals=left bracket Start 2 By 1 Matrix 1st Row 1st Column negative 5 2nd Row 1st Column negative 36 EndMatrix right bracket −5 −36 ​, Bold b 2b2equals=left bracket Start 2 By 1 Matrix 1st Row 1st Column 3 2nd Row 1st Column 16 EndMatrix right...
1. Let a,b,c,d be row vectors and form the matrix A whose rows are a,b,c,d. If...
1. Let a,b,c,d be row vectors and form the matrix A whose rows are a,b,c,d. If by a sequence of row operations applied to A we reach a matrix whose last row is 0 (all entries are 0) then:        a. a,b,c,d are linearly dependent   b. one of a,b,c,d must be 0.       c. {a,b,c,d} is linearly independent.       d. {a,b,c,d} is a basis. 2. Suppose a, b, c, d are vectors in R4 . Then they form a...
Let A be a 2x2 matrix and suppose that det(A)=3. For each of the following row...
Let A be a 2x2 matrix and suppose that det(A)=3. For each of the following row operations, determine the value of det(B), where B is the matrix obtained by applying that row operation to A. a) Multiply row 1 by -4 b) Add 4 times row 2 to row 1 c) Interchange rows 2 and 1 Resulting values for det(B): a) det(B) = b) det(B) = c) det(B) =
Let R*= R\ {0} be the set of nonzero real numbers. Let G= {2x2 matrix: row...
Let R*= R\ {0} be the set of nonzero real numbers. Let G= {2x2 matrix: row 1(a b) row 2 (0 a) | a in R*, b in R} (a) Prove that G is a subgroup of GL(2,R) (b) Prove that G is Abelian
. Given the matrix A = 1 1 3 -2 2 5 4 3 −1 2...
. Given the matrix A = 1 1 3 -2 2 5 4 3 −1 2 1 3 (a) Find a basis for the row space of A (b) Find a basis for the column space of A (c) Find the nullity of A
1. Let A be the 2x2 matrix in M_{2x2}(C), whose first row is (0,1) and second...
1. Let A be the 2x2 matrix in M_{2x2}(C), whose first row is (0,1) and second row is (-1,0). (a) Show that A is normal. (b) Find (complex) eigenvalues of A. (c) Find an orthogonal basis for C^2, which consists of eigenvectors of A. (d) Find an orthonormal basis for C^2, which consists of eigenvectors of A.
A=l −2 −7 −45 4 5 27 1 3 20 . Find the third column of...
A=l −2 −7 −45 4 5 27 1 3 20 . Find the third column of A−1 ( subscript -1) without computing the other two columns. How can the third column of A−1 ( subscript -1) be found without computing the other​ columns? A. Row reduce the augmented matrix​ [AI3​( not 13 but capital I subscript 3]. B. Row reduce the augmented matrix​ [A e3​],where e3 is the third column of I3.( capital I subscript 3) C. Row reduce the...
MATLAB Create a matrix E, using A and B vectors as row 1 and row 2...
MATLAB Create a matrix E, using A and B vectors as row 1 and row 2 respectively A = 10 thru 1 B = 1 thru 4.2 with ten equally spaced elements and Find the indices (row and col) within E where (prob02a, b, c, d) E = 5 E > 4 E < 1.9 E > 1 and E < 2
Let T be an linear transformation from ℝr to ℝs. Let A be the matrix associated...
Let T be an linear transformation from ℝr to ℝs. Let A be the matrix associated to T. Fill in the correct answer for each of the following situations (enter your answers as A, B, or C).   1. Every row in the row-echelon form of A has a leading entry.   2. Two rows in the row-echelon form of A do not have leading entries.   3. The row-echelon form of A has a leading entry in every column.   4. The row-echelon...
Consider the following matrix. A = 4 -1 -1 2 6 -3 6 4 1 Let...
Consider the following matrix. A = 4 -1 -1 2 6 -3 6 4 1 Let B = adj(A). Find b31, b32, and b33. (i.e., find the entries in the third row of the adjoint of A.)