Question

Consider a nonhomogeneous differential equation ?′′ − 3?′ + 2? = ?3? (a) Find any particular...

Consider a nonhomogeneous differential equation

?′′ − 3?′ + 2? = ?3?

(a) Find any particular solution ?? by using Lagrange’s method.

(b) Find the general solution.

(c) Find the particular solution if ?(0) = 1 2 and ?′(0) = 0.

Homework Answers

Answer #1

if you have any questions about it ask me in comment

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A nonhomogeneous equation and a particular solution are given. Find a general solution for the equation....
A nonhomogeneous equation and a particular solution are given. Find a general solution for the equation. y''+5y'+6y=24x^(2)+40x+8+12e^(x), y_p(x)=e^(x)+4x^(2) The general solution is y(x)= ​(Do not use​ d, D,​ e, E,​ i, or I as arbitrary constants since these letters already have defined​ meanings.)
Find a) the general solution of the differential equation y' = ( y^2 + 1 )...
Find a) the general solution of the differential equation y' = ( y^2 + 1 ) ( 2x + 3) b ) if the particular solution (if it exists) of the above mentioned differential equation that satisfies the initial condition y(0) = -1
The nonhomogeneous equation t2 y′′−2 y=29 t2−1, t>0, has homogeneous solutions y1(t)=t2, y2(t)=t−1. Find the particular...
The nonhomogeneous equation t2 y′′−2 y=29 t2−1, t>0, has homogeneous solutions y1(t)=t2, y2(t)=t−1. Find the particular solution to the nonhomogeneous equation that does not involve any terms from the homogeneous solution.
Solve the following differential equation by variation of parameters. Fully evaluate all integrals. y′′+9y=sec(3x). a. Find...
Solve the following differential equation by variation of parameters. Fully evaluate all integrals. y′′+9y=sec(3x). a. Find the most general solution to the associated homogeneous differential equation. Use c1 and c2 in your answer to denote arbitrary constants, and enter them as c1 and c2. b. Find a particular solution to the nonhomogeneous differential equation y′′+9y=sec(3x). c. Find the most general solution to the original nonhomogeneous differential equation. Use c1 and c2 in your answer to denote arbitrary constants.
Consider the differential equation dy/dx= 2y(x+1) a) sketch a slope field b) Show that any point...
Consider the differential equation dy/dx= 2y(x+1) a) sketch a slope field b) Show that any point with initial condition x = –1 in the 2nd quadrant creates a relative minimum for its particular solution. c)Find the particular solution y=f(x)) to the given differential equation with initial condition f(0) = 2 d)For the solution in part c), find lim x aproaches 0 f(x)-2/tan(x^2+2x)
Consider the differential equation:  . Let y = f(x) be the particular solution to the differential equation...
Consider the differential equation:  . Let y = f(x) be the particular solution to the differential equation with initial condition, f(0) = -1. Part (a) Find  . Show or explain your work, do not just give an answer.
The nonhomogeneous equation t2 y′′−2 y=19 t2−1, t>0, has homogeneous solutions y1(t)=t2, y2(t)=t−1. Find the particular...
The nonhomogeneous equation t2 y′′−2 y=19 t2−1, t>0, has homogeneous solutions y1(t)=t2, y2(t)=t−1. Find the particular solution to the nonhomogeneous equation that does not involve any terms from the homogeneous solution. Enter an exact answer. Enclose arguments of functions in parentheses. For example, sin(2x). y(t)=
find the solution of these nonhomogeneous differential equations by using the method of undetermined coefficients y"-...
find the solution of these nonhomogeneous differential equations by using the method of undetermined coefficients y"- y' - 6y = 18x^(2) + 5
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a...
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a first-order differential equation in terms of the variables u. Solve the first-order differential equation for u (using either separation of variables or an integrating factor) and integrate u to find y. (b) Write out the auxiliary equation for the differential equation and use the methods of Section 4.2/4.3 to find the general solution. (c) Find the solution to the initial value problem y′′+ 9y′=...
Use the undetermined coefficients method to find the particular solution of the differential equation y'' +...
Use the undetermined coefficients method to find the particular solution of the differential equation y'' + 3y' - 4y = xe2x and then write the general solution.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT