Question

On set R2 define ∼ by writing(a,b)∼(u,v)⇔ 2a−b = 2u−v. Prove that∼is an equivalence relation on...

On set R2 define ∼ by writing(a,b)∼(u,v)⇔ 2a−b = 2u−v. Prove that∼is an equivalence relation on R2

In the previous problem:

(1) Describe [(1,1)]∼. (That is formulate a statement P(x,y) such that [(1,1)]∼ = {(x,y) ∈ R2 | P(x,y)}.)

(2) Describe [(a, b)]∼ for any given point (a, b).

(3) Plot sets [(1,1)]∼ and [(0,0)]∼ in R2.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Write vectors in R2 as (x,y). Define the relation on R2 by writing (x1,y1) ∼ (x2,y2)...
Write vectors in R2 as (x,y). Define the relation on R2 by writing (x1,y1) ∼ (x2,y2) iff y1 − sin x1 = y2 − sin x2 . Prove that ∼ is an equivalence relation. Find the classes [(0, 0)], [(2, π/2)] and draw them on the plane. Describe the sets which are the equivalence classes for this relation.
For each of the following, prove that the relation is an equivalence relation. Then give the...
For each of the following, prove that the relation is an equivalence relation. Then give the information about the equivalence classes, as specified. a) The relation ∼ on R defined by x ∼ y iff x = y or xy = 2. Explicitly find the equivalence classes [2], [3], [−4/5 ], and [0] b) The relation ∼ on R+ × R+ defined by (x, y) ∼ (u, v) iff x2v = u2y. Explicitly find the equivalence classes [(5, 2)] and...
Let G be a graph with vertex set V. Define a relation R from V to...
Let G be a graph with vertex set V. Define a relation R from V to itself as follows: vertex u has this relation R with vertex v, u R v, if there is a path in G from u to v. Prove that this relation is an equivalence relation. Write your proof with complete sentences line by line in a logical order.  If you can, you may write your answer to this question directly in the space provided.Your presentation counts.
Define the relation S on RxR by (x,y)S(a,b) if and only if x^2 + y^2= a^2...
Define the relation S on RxR by (x,y)S(a,b) if and only if x^2 + y^2= a^2 + b^2. a) Prove S in an equivalence relation b) compute [(0,0)], [(1,2)], and [(-3,4)]. c) Draw a picture in R^2 representing these three equivalence classes.
Let P be the set of all ordered pairs (a, b) where a and b are...
Let P be the set of all ordered pairs (a, b) where a and b are real numbers. Let us define a two-place relation ≡ on P by (a, b) ≡ (c, d) if and only if a^2 − c^2 = 2b − 2d where (a, b) and (c, d) belong to P. Prove that ≡ is an equivalence relation on P. Draw a diagram on the X × Y plane of the equivalence class that contains the point (2,...
Hurry pls. Let W denote the set of English words. for u,v are elements of W...
Hurry pls. Let W denote the set of English words. for u,v are elements of W (u~v have the same first letter and same last letter same length) a) prove ~ is an equivalence relation b)list all elements of the equivalence class[a] c)list all elements of [ox] d) list all elements of[are] e) list all elements of [five] find all three letter words x such that [x]has 5 elements
For Problems #5 – #9, you willl either be asked to prove a statement or disprove...
For Problems #5 – #9, you willl either be asked to prove a statement or disprove a statement, or decide if a statement is true or false, then prove or disprove the statement. Prove statements using only the definitions. DO NOT use any set identities or any prior results whatsoever. Disprove false statements by giving counterexample and explaining precisely why your counterexample disproves the claim. ********************************************************************************************************* (5) (12pts) Consider the < relation defined on R as usual, where x <...
Let S be the set of all real circles, defined by (x-a)^2 + (y-b)^2=r^2. Define d(C1,C2)...
Let S be the set of all real circles, defined by (x-a)^2 + (y-b)^2=r^2. Define d(C1,C2) = √((a1 − a2)^2 + (b1 − b2)^2 + (r1 − r2)^2 so that S is a metric space. Prove that metric space S is NOT a complete metric space. Give a clear example. Describe points of C\S as limits of the appropriate sequences of circles, where C is the completion of S.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT