Question

​​​​​​ For each of the following relations on the set of all integers, determine whether the...

​​​​​​

  1. For each of the following relations on the set of all integers, determine whether the relation is reflexive, symmetric, and/or transitive:
    1. (?, ?) ∈ ? if and only if ? < ?.
    2. (?, ?) ∈ ? if and only ?? ≥ 1.
    3. (?, ?) ∈ ? if and only ? = −?.
    4. (?, ?) ∈ ? if and only ? = |?|.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let A be the set of all integers, and let R be the relation "m divides...
Let A be the set of all integers, and let R be the relation "m divides n." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
2. Let R be a relation on the set of integers ℤ defined by ? =...
2. Let R be a relation on the set of integers ℤ defined by ? = {(?, ?): a2 + ?2 ?? ? ??????? ??????} Is this relation reflexive? Symmetric? transitive?
For each of the following relations, determine whether the relation is reflexive, irreflexive, symmetric, antisymmetric, and/or...
For each of the following relations, determine whether the relation is reflexive, irreflexive, symmetric, antisymmetric, and/or transitive. Then find R−1. a) R = {(x,y) : x,y ∈Z,x−y = 1}. b) R = {(x,y) : x,y ∈N,x|y}.
Let A be the set of all real numbers, and let R be the relation "less...
Let A be the set of all real numbers, and let R be the relation "less than." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
Let S1 and S2 be any two equivalence relations on some set A, where A ≠...
Let S1 and S2 be any two equivalence relations on some set A, where A ≠ ∅. Recall that S1 and S2 are each a subset of A×A. Prove or disprove (all three): The relation S defined by S=S1∪S2 is (a) reflexive (b) symmetric (c) transitive
Let S1 and S2 be any two equivalence relations on some set A, where A ≠...
Let S1 and S2 be any two equivalence relations on some set A, where A ≠ ∅. Recall that S1 and S2 are each a subset of A×A. Prove or disprove (all three): The relation S defined by S=S1∪S2 is (a) reflexive (b) symmetric (c) transitive
For each of the following relations on the set {1, 2, 3, 4} (a)   { (1,...
For each of the following relations on the set {1, 2, 3, 4} (a)   { (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4) } (b)   { (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) } (c)   { (2, 4}, (4, 2) } (d)   ( (1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4) } Choose all answers that apply. Group of...
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation...
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation R on Z where (?, ?) ∈ ? if ? = ? . The relation R on the set of all subsets of {1, 2, 3, 4} where SRT means S C T.
Determine whether the binary relation R on {a, b, c}   where R={(a, a), (b, b)), (c,...
Determine whether the binary relation R on {a, b, c}   where R={(a, a), (b, b)), (c, c), (a, b), (a, c), (c, b) } is: a. reflexive, antisymmetric, symmetric b. transitive, symmetric, antisymmetric c. antisymmetric, reflexive, transitive d. symmetric, reflexive, transitive
the relation R on the set of all people where aRb means that a is younger...
the relation R on the set of all people where aRb means that a is younger than b. Determine if R is: reflexive symmetric transitive antisymmetric
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT