Question

Let G be an infinite simple p-group. Prove that Z(G) = 1.

Let G be an infinite simple p-group. Prove that Z(G) = 1.

Homework Answers

Answer #1

By definition of Simple group :A simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself.

Lemma 1 : Z(G) is normal Group of G {Proved at last}

On contrary suppose given is not true

This implies by Simplicity and lemma 1 Z(G)=G

This implies G is abelian infinite p group

As every subgroup in Abelian group is also normal group This implies G doesnot have any subgroup

This contradicts to Lagrange theorem

As it must have some nontrivial subgroup of the order of power of prime {As it is infinite p-group}

So Z(G)=G.

________________________________________________________________________

Proof of lemma 1:

This true for every So Z(G) is normal in G

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be a non-abelian group of order p^3 with p prime. (a) Show that |Z(G)|...
Let G be a non-abelian group of order p^3 with p prime. (a) Show that |Z(G)| = p. (b) Suppose a /∈ Z(G). Show that |NG(a)| = p^2 . (c) Show that G has exactly p 2 +p−1 conjugacy classes (don’t forget to count the classes of the elements of Z(G)).
Let G be a group of order p^3. Prove that either G is abelian or its...
Let G be a group of order p^3. Prove that either G is abelian or its center has exactly p elements.
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G...
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G → G by φ(x) = x^ k . (a) Prove that φ is a group homomorphism. (b) Assume that G is finite and |G| is relatively prime to k. Prove that Ker φ = {e}.
find all generators of Z. let "a" be a group element that has infinite order. Find...
find all generators of Z. let "a" be a group element that has infinite order. Find all the generators of . Please prove and explain in detail please use definions and theorems. please i reallly want to understand this.
Let G be a group and define the center (of G) Z(G) = {a ∈ G...
Let G be a group and define the center (of G) Z(G) = {a ∈ G | xa = ax, ∀ x ∈ G} a. Prove that Z(G) forms a subgroup of G. b. If G is abelian, show that Z(G) = G. c. What is the center of S3
Let G be a group, and let a be in G. If |a| = 5, prove...
Let G be a group, and let a be in G. If |a| = 5, prove that the centralizer of a is the centralizer of a3
Let G be a finite group and let P be a Sylow p-subgroup of G. Suppose...
Let G be a finite group and let P be a Sylow p-subgroup of G. Suppose H is a normal subgroup of G. Prove that HP/H is a Sylow p-subgroup of G/H and that H ∩ P is a Sylow p-subgroup of H. Hint: Use the Second Isomorphism theorem.
Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime:...
Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime: there exist infinitely many positive integers n such that p | f(n)} is infinite.
let G be a group of order 18. x, y, and z are elements of G....
let G be a group of order 18. x, y, and z are elements of G. if | < x, y >| = 9 and o(z) = order of z = 9, prove that G = < x, y, z >
Let G be a group and a be an element of G. Let φ:Z→G be a...
Let G be a group and a be an element of G. Let φ:Z→G be a map defined by φ(n) =a^{n} for all n∈Z. Find the image φ(Z) and prove that φ(Z) a subgroup of G