Question

For any odd integer n, show that 3 divides 2n+1. That is 2 to the nth...

For any odd integer n, show that 3 divides 2n+1.

That is 2 to the nth power, not 2 times n

Homework Answers

Answer #1

Using Mathematical Induction

2^n +1 is divisible by 3 for all odd integers n >= 1

Base Case:

Let n = 1,

LHS = 2^1 + 1 = 3

3 is divisible by 3.

The statement is true for n = 1.

Let the statement be true for k'th odd integer = (2k-1)

That is, 2^(2k-1) + 1 is divisible by 3.

=> 2^(2k-1) + 1 = 3p

=> 2^(2k-1) = 3p - 1

Consider the statement for (k+1)'th odd integer = (2k+1)

LHS = 2^(2k+1) + 1 = 2^(2k-1 + 2) + 1 = 2^(2k-1) * 2^2 + 1 = (3p-1)*4 + 1 = 3p*4 + 3 = 3*(4p + 1)

3*(4p + 1) is divisible by 3.

=> 2^(2k+1) + 1 is divisible by 3

The statement is true for (k+1)'th odd integer,

The statement is true for all odd integers n >=1

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following statement: if n is an integer, then 3 divides n3 + 2n. (a)...
Consider the following statement: if n is an integer, then 3 divides n3 + 2n. (a) Prove the statement using cases. (b) Prove the statement for all n ≥ 0 using induction.
If n is an odd integer, prove that 12 divides n2+(n+2)2+(n+4)2+1. Please provide full solution!
If n is an odd integer, prove that 12 divides n2+(n+2)2+(n+4)2+1. Please provide full solution!
Used induction to proof that 1 + 2 + 3 + ... + 2n = n(2n+1)...
Used induction to proof that 1 + 2 + 3 + ... + 2n = n(2n+1) when n is a positive integer.
Show that, for any integer n ≥ 2, (n + 1)n − 1 is divisible by...
Show that, for any integer n ≥ 2, (n + 1)n − 1 is divisible by n2 . (Hint: Use the Binomial Theorem.)
Prove that for each positive integer n, (n+1)(n+2)...(2n) is divisible by 2^n
Prove that for each positive integer n, (n+1)(n+2)...(2n) is divisible by 2^n
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also...
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also odd. 3.b) Let x and y be integers. Prove that if x is even and y is divisible by 3, then the product xy is divisible by 6. 3.c) Let a and b be real numbers. Prove that if 0 < b < a, then (a^2) − ab > 0.
True Or False 1. If nn is odd and the square root of nn is a...
True Or False 1. If nn is odd and the square root of nn is a natural number then the square root of nn is odd. 2. The square of any even integer is even 3. The substraction of 2 rational numbers is rational. 4. If nn is an odd integer, then n2+nn2+n is even. 5. If a divides b and a divides c then a divides bc. 6. For all real numbers a and b, if a^3=b^3 then a=b.
6. Consider the statment. Let n be an integer. n is odd if and only if...
6. Consider the statment. Let n be an integer. n is odd if and only if 5n + 7 is even. (a) Prove the forward implication of this statement. (b) Prove the backwards implication of this statement. 7. Prove the following statement. Let a,b, and c be integers. If a divides bc and gcd(a,b) = 1, then a divides c.
Show that, for any positive integer n, n lines ”in general position” (i.e. no two of...
Show that, for any positive integer n, n lines ”in general position” (i.e. no two of them are parallel, no three of them pass through the same point) in the plane R2 divide the plane into exactly n2+n+2 regions. (Hint: Use the fact that an nth line 2 will cut all n − 1 lines, and thereby create n new regions.)
Prove the following statement by mathematical induction. For every integer n ≥ 0, 2n <(n +...
Prove the following statement by mathematical induction. For every integer n ≥ 0, 2n <(n + 2)! Proof (by mathematical induction): Let P(n) be the inequality 2n < (n + 2)!. We will show that P(n) is true for every integer n ≥ 0. Show that P(0) is true: Before simplifying, the left-hand side of P(0) is _______ and the right-hand side is ______ . The fact that the statement is true can be deduced from that fact that 20...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT