Question

Recall that we have proven that we have the relation “ mod n” on the integers...

Recall that we have proven that we have the relation “ mod n” on the integers where a ≡ b mod n if n | b − a . We call the set of equivalence classes: Z/nZ. Show that addition and multiplication are well-defined on the equivalence classes by showing

(a) that you have a definition of addition and multiplication for pairs which matches your intuition and

(b) that if you choose different representatives when you add or multiply, the final result is invariant under this choice and

(c) define division for some pairs and show that this is well-defined as well.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Recall from class that we defined the set of integers by defining the equivalence relation ∼...
Recall from class that we defined the set of integers by defining the equivalence relation ∼ on N × N by (a, b) ∼ (c, d) =⇒ a + d = c + b, and then took the integers to be equivalence classes for this relation, i.e. Z = [(a, b)]∼ | (a, b) ∈ N × N . We then proceeded to define 0Z = [(0, 0)]∼, 1Z = [(1, 0)]∼, − [(a, b)]∼ = [(b, a)]∼, [(a, b)]∼...
Let N* be the set of positive integers. The relation ∼ on N* is defined as...
Let N* be the set of positive integers. The relation ∼ on N* is defined as follows: m ∼ n ⇐⇒ ∃k ∈ N* mn = k2 (a) Prove that ∼ is an equivalence relation. (b) Find the equivalence classes of 2, 4, and 6.
9e) fix n ∈ ℕ. Prove congruence modulo n is an equivalence relation on ℤ. How...
9e) fix n ∈ ℕ. Prove congruence modulo n is an equivalence relation on ℤ. How many equivalence classes does it have? 9f) fix n ∈ ℕ. Prove that if a ≡ b mod n and c ≡ d mod n then a + c ≡b + d mod n. 9g) fix n ∈ ℕ.Prove that if a ≡ b mod n and c ≡ d mod n then ac ≡bd mod n.
1. a. Consider the definition of relation. If A is the set of even numbers and...
1. a. Consider the definition of relation. If A is the set of even numbers and ≡ is the subset of ordered pairs (a,b) where a<b in the usual sense, is ≡ a relation? Explain. b. Consider the definition of partition on the bottom of page 18. Theorem 2 says that the equivalence classes of an equivalence relation form a partition of the set. Consider the set ℕ with the equivalence relation ≡ defined by the rule: a≡b in ℕ...
Determine the distance equivalence classes for the relation R is defined on ℤ by a R...
Determine the distance equivalence classes for the relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. I had to prove it was an equivalence relation as well, but that part was not hard. Just want to know if the logic and presentation is sound for the last part: 8.48) A relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. Prove that R...
1. Suppose we have the following relation defined on Z. We say that a ∼ b...
1. Suppose we have the following relation defined on Z. We say that a ∼ b iff 2 divides a + b. (a) Prove that the relation ∼ defines an equivalence relation on Z. (b) Describe the equivalence classes under ∼ . 2. Suppose we have the following relation defined on Z. We say that a ' b iff 3 divides a + b. It is simple to show that that the relation ' is symmetric, so we will leave...
Recall the 2-sum problem which took an array of N integers and determined the number of...
Recall the 2-sum problem which took an array of N integers and determined the number of pairs that summed to 0. Now consider a 2-sum BST problem. Let B be a binary search tree with N integers as unique keys. Using only data structures and algorithms that have been discussed in this class, describe an algorithm that will return the number of pairs in B that add to 0. Analyze the space and runtime of your algorithm.
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Show that the equivalence classes of R correspond to the elements of  ℤpq. That is: [a] = [b] as equivalence classes of R if and only if [a] = [b] as elements of ℤpq. you may use the following lemma: If p is prime...
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. I need to prove that: a) R is an equivalence relation. (which I have) b) The equivalence classes of R correspond to the elements of  ℤpq. That is: [a] = [b] as equivalence classes of R if and only if [a] = [b] as elements of ℤpq I...
Consider the set Q(√3) ={a+b√3| a,b∈Q}. We have the associative properties of usual addition and usual...
Consider the set Q(√3) ={a+b√3| a,b∈Q}. We have the associative properties of usual addition and usual multiplication from the field of real number R. a)Show that Q (√3) is closed under addition, contains the additive identity (0,zero) of R, each element contains the additive inverses, and say if addition is commutative. What does this tell you about (Q(√3,+)? b) Prove that Q(√3) is a commutative ring with unity 1 c) Prove that Q(√3) is a field by showing every nonzero...