Question

choose all of the following statements that are correct for a particle in a one dimensional...

choose all of the following statements that are correct for a particle in a one dimensional infinite square

a,)the stationary states refers to eigenstates of any operator corresponding to physical observable

b)in an isolated system if a particle has well -defined position at time = 0 the position of the particle is well defined at all times t>0

c)in an isolated system if an energy eigenstate at time t=0 the energy of the particle is well defined at all times t>o

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The purpose of this problem is to compare the time dependencies for systems in a superposition...
The purpose of this problem is to compare the time dependencies for systems in a superposition of two energy eigenstates in an infinite square well to those in a simple harmonic oscillator. Consider two systems (an infinite square well and a simple harmonic oscillator) that have the same value for their ground state energy Eground. 1) What is E3, the energy of the 2nd excited state (the third lowest energy) of the infinite square well system in terms of Eground?...
The purpose of this problem is to compare the time dependencies for systems in a superposition...
The purpose of this problem is to compare the time dependencies for systems in a superposition of two energy eigenstates in an infinite square well to those in a simple harmonic oscillator. Consider two systems (an infinite square well and a simple harmonic oscillator) that have the same value for their ground state energy Eground. 1) What is E3, the energy of the 2nd excited state (the third lowest energy) of the infinite square well system in terms of Eground?...
The purpose of this problem is to compare the time dependencies for systems in a superposition...
The purpose of this problem is to compare the time dependencies for systems in a superposition of two energy eigenstates in an infinite square well to those in a simple harmonic oscillator. Consider two systems (an infinite square well and a simple harmonic oscillator) that have the same value for their ground state energy Eground. 1) What is E3, the energy of the 2nd excited state (the third lowest energy) of the infinite square well system in terms of Eground?...
Which of the following systems is degenerate? Question 4 options: a) Two-dimensional harmonic oscillator b) One-dimensional...
Which of the following systems is degenerate? Question 4 options: a) Two-dimensional harmonic oscillator b) One-dimensional Infinite square well c) One-dimensional finite square well d) One-dimensional harmonic oscillator e) All time-dependent systems
Exercise 3. Consider a particle with mass m in a two-dimensional infinite well of length L,...
Exercise 3. Consider a particle with mass m in a two-dimensional infinite well of length L, x, y ∈ [0, L]. There is a weak potential in the well given by V (x, y) = V0L2δ(x − x0)δ(y − y0) . Evaluate the first order correction to the energy of the ground state.    Evaluate the first order corrections to the energy of the first excited states for x0 =y0 = L/4. For the first excited states, find the points...
For a particle trapped in a one-dimensional infinite square well potential of length ?, find the...
For a particle trapped in a one-dimensional infinite square well potential of length ?, find the probability that the particle is in its ground state is in a) The left third of the box: 0 ≤ ? ≤ ?/3 b) The middle third of the box: ?/3 ≤ ? ≤ 2?/3 c) The right third of the box: 2?/3 ≤ ? ≤ L After doing parts a), b), and c): d) Calculate the sum of the probabilities you got for...
The infinite potential well has zero potential energy between 0 and a, and is infinite elsewhere....
The infinite potential well has zero potential energy between 0 and a, and is infinite elsewhere. a) What are the energy eigenstates of this quantum system, and what are their energies? In the case of a discrete spectrum, explain where the quantization comes from. b) Suppose we take the wavefunction at a given time to be an arbitrary function of x that is symmetric around the center of the well (at x = a/2). Is this a stationary state in...
1 - Write the one dimensional, time-independent Schrödinger Wave Equation (SWE). Using the appropriate potential energy...
1 - Write the one dimensional, time-independent Schrödinger Wave Equation (SWE). Using the appropriate potential energy functions for the following systems, write the complete time independent SWE for: (a) a particle confined to a one-dimensional infinite square well, (b) a one-dimensional harmonic oscillator, (c) a particle incident on a step potential, and (d) a particle incident on a barrier potential of finite width. 2 - Find the normalized wavefunctions and energies for the systems in 1(a). Use these wavefunctions to...
A particle is in the ground state of an infinite square well. The potential wall at...
A particle is in the ground state of an infinite square well. The potential wall at x = L suddenly (i.e., instantaneously) moves to x = 3L. such that the well is now three times its original size. (a) Let t = 0 be at the instant of the sudden change in the potential well. What is ψ(x, 0)? (b) If you measure the energy of the particle in the new well, what are the possible energies? (c) Estimate the...
In this problem we are interested in the time-evolution of the states in the infinite square...
In this problem we are interested in the time-evolution of the states in the infinite square potential well. The time-independent stationary state wave functions are denoted as ψn(x) (n = 1, 2, . . .). (a) We know that the probability distribution for the particle in a stationary state is time-independent. Let us now prepare, at time t = 0, our system in a non-stationary state Ψ(x, 0) = (1/√( 2)) (ψ1(x) + ψ2(x)). Study the time-evolution of the probability...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT