Question

find the eigenvalues and the eigenfunctions for the equation y'' + (lambda)y = 0 where y(a)...

find the eigenvalues and the eigenfunctions for the equation y'' + (lambda)y = 0 where y(a) = 0, y(b) = 0 for a<b.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
find the eigenvalues and eigenfunctions for the given boundary-value problem. y'' + (lambda)y = 0, y(-pi)=0,...
find the eigenvalues and eigenfunctions for the given boundary-value problem. y'' + (lambda)y = 0, y(-pi)=0, y(pi)=0 Please explain where alpha = (2n+1)/2 comes from in the lambda>0 case. Thank you!!
Find the eigenvalues and eigenfunctions of the Sturm-Liouville system y"+ lamda y = 0 y(0) =...
Find the eigenvalues and eigenfunctions of the Sturm-Liouville system y"+ lamda y = 0 y(0) = 0 y'(1) = 1 (b) Show that the eigenfunctions Yn and Ym you obtained from the above are orthogonal if n not= m.
a)Find the eigenvalues and eigenfunctions of the Sturm-Liouville system y"+ lamda y = 0 y(0) =...
a)Find the eigenvalues and eigenfunctions of the Sturm-Liouville system y"+ lamda y = 0 y(0) = 0 y'(1) = 1 I got y=x and y=sin((sqrt k)x)/((sqrt k) cos(sqrt k)) Please do b (b) Show that the eigenfunctions Yn and Ym you obtained from the above are orthogonal if n not= m.
Find all eigenvalues and corresponding eigenfunctions for the following boundary value problem (x^2)y'' + λy =...
Find all eigenvalues and corresponding eigenfunctions for the following boundary value problem (x^2)y'' + λy = 0, (1 < x < 2), y(1) = 0 = y(2) and in particular the three cases μ < 1/2, μ = 1/2, and μ > 1/2 associated with the sign and vanishing of the discriminant of the characteristic equation
Using separation of variables, write down a complete list of L^2 eigenfunctions and of eigenvalues for...
Using separation of variables, write down a complete list of L^2 eigenfunctions and of eigenvalues for the Laplacian on the cylinder D X [-1, 1], with homogeneous Dirichlet boundary conditions, where D is the (two-dimensional) disk centered at the origin of radius 2. b) Use this to solve the heat equation partial u / partial t = Delta u on this cylinder with homogeneous Dirichlet boundary conditions, with initial data u(x, y, z, 0) = z, where z is the...
Sturm-Liouville problem: y′′+λy= 0, y′(0) = 0, y(1) +y′(1) = 0. Determine the four smallest eigenvalues...
Sturm-Liouville problem: y′′+λy= 0, y′(0) = 0, y(1) +y′(1) = 0. Determine the four smallest eigenvalues and corresponding eigenfuntions. For lambda = 0, < 0, > 0
Find all eigenvectors of this 3x3 matrix, when the eigenvalues are lambda = 1, 2, 3...
Find all eigenvectors of this 3x3 matrix, when the eigenvalues are lambda = 1, 2, 3 4 0 1 -2 1 0 -2 0 1
Sturm-Liouville problem: y′′+λy= 0, y′(0) = 0, y(1) +y′(1) = 0. Determine the four smallest eigenvalues...
Sturm-Liouville problem: y′′+λy= 0, y′(0) = 0, y(1) +y′(1) = 0. Determine the four smallest eigenvalues and corresponding eigenfuntions. Please do it for lambda = 0, < 0, > 0. I'm strugeling with the basics. Help would be appreciated.
Find all lambda such that the system of equations -6⋅x+(-10)⋅y+6⋅z= lambda ⋅x, 5⋅x+9⋅y+1⋅z= lambda ⋅y, 0⋅x+0⋅y+5⋅z=...
Find all lambda such that the system of equations -6⋅x+(-10)⋅y+6⋅z= lambda ⋅x, 5⋅x+9⋅y+1⋅z= lambda ⋅y, 0⋅x+0⋅y+5⋅z= lambda ⋅z has a non-zero solution (x,y,z).
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 0 −3 5...
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 0 −3 5 −4 4 −10 0 0 4 (a) the characteristic equation (b) the eigenvalues (Enter your answers from smallest to largest.) (λ1, λ2, λ3) = the corresponding eigenvectors x1 = x2 = x3 =
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT