Question

Prove by strong induction that ?(base ?) =3^(?) −2^(?) for all ?≥0 .

Prove by strong induction that ?(base ?) =3^(?) −2^(?) for all ?≥0 .

Homework Answers

Answer #1

Let the induction hypothesis, a(n), be

Base Case: For n = 0,

and For n=1,

hence these true on both values of n = 0 and 1.

Inductive Step: Assume that and , where , are true for purposes of induction.

Then and

Since we assumed A(n−1) and A(n−2), we can We rewrite

thus, we get

its proved....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Without using the Fundamental Theorem of Arithmetic, use strong induction to prove that for all positive...
Without using the Fundamental Theorem of Arithmetic, use strong induction to prove that for all positive integers n with n ≥ 2, n has a prime factor.
Use strong induction to prove that every natural number n ≥ 2 can be written as...
Use strong induction to prove that every natural number n ≥ 2 can be written as n = 2x + 3y, where x and y are integers greater than or equal to 0. Show the induction step and hypothesis along with any cases
Prove by induction that 7 + 11 + 15 + … + (4n + 3) =...
Prove by induction that 7 + 11 + 15 + … + (4n + 3) = ( n ) ( 2n + 5 ) Prove by induction that 1 + 5 + 25 + … + 5n-1 = ( 1/4 )( 5n – 1 ) Prove by strong induction that an = 3 an-1 + 5 an-2 is even with a0 = 2 and a1 = 4.
Use Mathematical Induction to prove that 3 | (n^3 + 2n) for all integers n =...
Use Mathematical Induction to prove that 3 | (n^3 + 2n) for all integers n = 0, 1, 2, ....
Prove by induction that 3^n ≥ 5n+10 for all n ≥ 3. I get past the...
Prove by induction that 3^n ≥ 5n+10 for all n ≥ 3. I get past the base case but confused on the inductive step.
prove: Let the real number x have a Base 3 representation of: x = 0.x0x1x2x3x4x5x6x7… where...
prove: Let the real number x have a Base 3 representation of: x = 0.x0x1x2x3x4x5x6x7… where xi  is the ith digit of x. Then, if xi ={ 0 , 2 } (or xi not equal to 1) for all non-negative integers i, then x is in the Cantor set (Cantor dust). Think about induction.
Prove by induction on n that 13 | 2^4n+2 + 3^n+2 for all natural numbers n.
Prove by induction on n that 13 | 2^4n+2 + 3^n+2 for all natural numbers n.
18. prove by induction 1 + 1! + 2·2! + 3·3! + ... + n·n! =...
18. prove by induction 1 + 1! + 2·2! + 3·3! + ... + n·n! = (n+1)! - 1
Use the Strong Principle of Mathematical Induction to prove that for each integer n ≥28, there...
Use the Strong Principle of Mathematical Induction to prove that for each integer n ≥28, there are nonnegative integers x and y such that n= 5x+ 8y
Use mathematical induction to prove that 3n ≥ n2n for n ≥ 0. (Note: dealing with...
Use mathematical induction to prove that 3n ≥ n2n for n ≥ 0. (Note: dealing with the base case may require some thought. Please explain the inductive step in detail.