Question

Check if each of the following ODEs is an exact. If it is not an exact...

Check if each of the following ODEs is an exact. If it is not an exact find an integrating factor to make it an exact. Then solve each of the following ODEs.

(c) (6y2 −x2 + 3) dy/dx + (3x2 −2xy + 2) = 0

(d) (3xy + y2)dx + (x2 + xy)dy =

Homework Answers

Answer #1

According to the rules only one question will be answered.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Check if each of the following ODEs is an exact. If it is not an exact...
Check if each of the following ODEs is an exact. If it is not an exact find an integrating factor to make it an exact. Then solve each of the following ODEs. (d) (3xy + y2)dx + (x2 + xy)dy = 0
1. Check if each of the following ODEs is an exact. If it is not an...
1. Check if each of the following ODEs is an exact. If it is not an exact find an integrating factor to make it an exact. Then solve each of the following ODEs. (a) (2x + 3)dx + (2y−2)dy = 0 (b) (4y + 2x−5) + (6y + 4x−1)y0 = 0
Solve the following exact DEs (a) y2 + 2xydy dx = 1 x2 (b) 2xey +...
Solve the following exact DEs (a) y2 + 2xydy dx = 1 x2 (b) 2xey + x2ey dy dx = sinx + xcosx (c) x2 dy dx + 2xy = 1 (d) (2x + sinxtany)−cosxsec2 ydy dx = 0. plese break them down in simple steps
Solve the given initial-value problem by finding, as in Example 4 of Section 2.4, an appropriate...
Solve the given initial-value problem by finding, as in Example 4 of Section 2.4, an appropriate integrating factor. (x2 + y2 − 7) dx = (y + xy) dy, y(0) = 1
i)Please state if the following equations are exact or not: (a) (sin(xy) − xy cos(xy))dx +...
i)Please state if the following equations are exact or not: (a) (sin(xy) − xy cos(xy))dx + x^2 cos(xy)dy = 0 (b) (x^3 + xy^2 )dx + (x^2 y + y^3 )dy = 0 ii) Determine if the following equation is exact, and if it is exact, find its complete integral in the form g(x, y) = C: (3(x)^2 + 2(y)^2 )dx + (4xy + 6(y)^2 )dy = 0
Consider the following differential equation: dy/dx = −(3xy+y^2)/x^2+xy (a) Rewrite this equation into the form M(x,...
Consider the following differential equation: dy/dx = −(3xy+y^2)/x^2+xy (a) Rewrite this equation into the form M(x, y)dx + N(x, y)dy = 0. Determine if this equation is exact; (b) Multiply x on both sides of the equation, is the new equation exact? (c) Solve the equation based on Part (a) and Part (b).
test if the equation ((x^4)(y^2) - y)dx + ((x^2)(y^4) - x)dy = 0 is exact. If...
test if the equation ((x^4)(y^2) - y)dx + ((x^2)(y^4) - x)dy = 0 is exact. If it is not exact, try to find an integrating factor. after the equation is made exact, solve by looking for integrable combinations
) Check that each of the following functions solves the corresponding differential equation, by computing both...
) Check that each of the following functions solves the corresponding differential equation, by computing both the left-hand side and right-hand side of the differential equation. (a) y = cos2 (x) solves dy/dx = −2 sin(x) √y (b) y = 4x + 1/x solves x dy dx + 2/x = y (c) y = e x 2+3 solves dy/dx = 2xy (d) y = ln(1 + x 2 ) solves e y dy dx = 2x
1)Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy...
1)Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy = 0,   y(1) = 1. Let af/ax = (x + y)2 = x2 + 2xy + y2. Integrate each term of this partial derivative with respect to x, letting h(y) be an unknown function in y. f(x, y) =   + h(y) Solve the given initial-value problem. 2) Solve the given initial-value problem. (6y + 2t − 3) dt + (8y + 6t − 1) dy...
1)  Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy...
1)  Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy = 0,   y(1) = 1 Let af/ax = (x + y)2 = x2 + 2xy + y2. Integrate each term of this partial derivative with respect to x, letting h(y) be an unknown function in y. f(x, y) =    + h(y) Find the derivative of h(y). h′(y) = Solve the given initial-value problem. 2) Solve the given initial-value problem. (6y + 2t − 3) dt...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT