Question

Prove that a closed set in the Zariski topology on K1 is either the empty set,...

Prove that a closed set in the Zariski topology on K1 is either the empty set, a finite collection of points, or K1 itself.

Homework Answers

Answer #1

Since closed sets are the zero sets of set of polynomials, we obtain closed sets by examining solutions to polynomials.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that in R^n with the usual topology, if a set is closed and bounded then...
Prove that in R^n with the usual topology, if a set is closed and bounded then it is compact.
Prove the conjecture or provide a counterexample: Let U ∈ in the usual topology, and let...
Prove the conjecture or provide a counterexample: Let U ∈ in the usual topology, and let F be a finite set. Then (U−F) ∈ in the usual topology.
Let T be the half-open interval topology for R, defined in Exercise 4.6. Show that (R,T)...
Let T be the half-open interval topology for R, defined in Exercise 4.6. Show that (R,T) is a T4 - space. Exercise 4.6 The intersection of two half-open intervals of the form [a,b) is either empty or a half-open interval. Thus the family of all unions of half-open intervals together with the empty set is closed under finite intersections, hence forms a topology, which has the half-open intervals as a base.
Prove <=: A x B = empty set <=> A= empty set or B = empty...
Prove <=: A x B = empty set <=> A= empty set or B = empty set?
Let X be a non-empty finite set with |X| = n. Prove that the number of...
Let X be a non-empty finite set with |X| = n. Prove that the number of surjections from X to Y = {1, 2} is (2)^n− 2.
Let the set N of natural numbers be endowed with the cofinite topology (in which a...
Let the set N of natural numbers be endowed with the cofinite topology (in which a set is open if and only if it is empty or its complement is finite). (a) Is N connected? Justify your answer. (b) Is N compact? Justify your answer. (c) Explain why the function f : N → N, n→ n ^3 is continuous. (d) Exhibit a function g : N → N which is not continuous.
True or False: Any finite set of real numbers is complete. Either prove or provide a...
True or False: Any finite set of real numbers is complete. Either prove or provide a counterexample.
Complex Analysis Proof - Prove: A set is closed if and only if S contains all...
Complex Analysis Proof - Prove: A set is closed if and only if S contains all of its accumulation points.
Let X be a topological space with topology T = P(X). Prove that X is finite...
Let X be a topological space with topology T = P(X). Prove that X is finite if and only if X is compact. (Note: You may assume you proved that if ∣X∣ = n, then ∣P(X)∣ = 2 n in homework 2, problem 2 and simply reference this. Hint: Ô⇒ follows from the fact that if X is finite, T is also finite (why?). Therefore every open cover is already finite. For the reverse direction, consider the contrapositive. Suppose X...
Prove Corollary 4.22: A set of real numbers E is closed and bounded if and only...
Prove Corollary 4.22: A set of real numbers E is closed and bounded if and only if every infinite subset of E has a point of accumulation that belongs to E. Use Theorem 4.21: [Bolzano-Weierstrass Property] A set of real numbers is closed and bounded if and only if every sequence of points chosen from the set has a subsequence that converges to a point that belongs to E. Must use Theorem 4.21 to prove Corollary 4.22 and there should...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT