Question

for the given functions f(x), let x0=1, x1=1.25, x2=1.6. Construct interpolation polynomials of degree at most...

for the given functions f(x), let x0=1, x1=1.25, x2=1.6. Construct interpolation polynomials of degree at most one and at most two to approximate f(1.4), and find the absolute error. a. f(x)=sin (pi x)

Homework Answers

Answer #1

therefore the absolute error is 0.1394 and 0.03283

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let x0=1, x1=1.25, and x2=1.6. Using data at these xi, construct interpolating polynomial of degrees at...
Let x0=1, x1=1.25, and x2=1.6. Using data at these xi, construct interpolating polynomial of degrees at one and two and use them to approximate f(1.4). Find the absolute errors d) Fx=ln(10x)
1 Approximation of functions by polynomials Let the function f(x) be given by the following: f(x)...
1 Approximation of functions by polynomials Let the function f(x) be given by the following: f(x) = 1/ 1 + x^2 Use polyfit to approximate f(x) by polynomials of degree k = 2, 4, and 6. Plot the approximating polynomials and f(x) on the same plot over an appropriate domain. Also, plot the approximation error for each case. Note that you also will need polyval to evaluate the approximating polynomial. Submit your code and both plots. Make sure each of...
Let P2 denote the vector space of polynomials in x with real coefficients having degree at...
Let P2 denote the vector space of polynomials in x with real coefficients having degree at most 2. Let W be a subspace of P2 given by the span of {x2−x+6,−x2+2x−1,x+5}. Show that W is a proper subspace of P2.
Let F (x1, x2) = ln(1 + 4x1 + 7x2 + 6x1x2), x = (x1, x2)...
Let F (x1, x2) = ln(1 + 4x1 + 7x2 + 6x1x2), x = (x1, x2) ∈ R . →− (a) Find the linearization of F at 0 . Show F is continuously differentiable, that is, C , at 0 .
Let f(x)=sin(x)+x^3-2. Use the secant method to find a root of f(x) using initial guesses x0=1...
Let f(x)=sin(x)+x^3-2. Use the secant method to find a root of f(x) using initial guesses x0=1 and x1=4. Continue until two consecutive x values agree in the first 2 decimal places.
The second-order Taylor polynomial fort he functions f(x)=√1+x about X0= is P2=1+(x/2)-(x^2/2) using the given Taylor...
The second-order Taylor polynomial fort he functions f(x)=√1+x about X0= is P2=1+(x/2)-(x^2/2) using the given Taylor polynomial approximate f(0.05) with 2 digits rounding and the find the relative error of the obtained value (Note f(0.05=1.0247). write down the answer and all the calculations steps in the text filed.
Let X =( X1, X2, X3 ) have the joint pdf f(x1, x2, x3)=60x1x22, where x1...
Let X =( X1, X2, X3 ) have the joint pdf f(x1, x2, x3)=60x1x22, where x1 + x2 + x3=1 and xi >0 for i = 1,2,3. find the distribution of X1 ? Find E(X1).
Let W⊂ C1 be the subspace spanned by the two polynomials x1(t) = 1 and x2(t)...
Let W⊂ C1 be the subspace spanned by the two polynomials x1(t) = 1 and x2(t) =t^2. For the given function y(t)=1−t^2 decide whether or not y(t) is an element of W. Furthermore, if y(t)∈W, determine whether the set {y(t), x2(t)} is a spanning set for W.
: Consider f(x) = 3 sin(x2) − x. 1. Use Newton’s Method and initial value x0...
: Consider f(x) = 3 sin(x2) − x. 1. Use Newton’s Method and initial value x0 = −2 to approximate a negative root of f(x) up to 4 decimal places. 2. Consider the region bounded by f(x) and the x-axis over the the interval [r, 0] where r is the answer in the previous part. Find the volume of the solid obtain by rotating the region about the y-axis. Round to 4 decimal places.
The second-order Taylor polynomial fort he functions f(x)=xlnx about X0= 1 is P2= -1+(x-1)^2/2 using the...
The second-order Taylor polynomial fort he functions f(x)=xlnx about X0= 1 is P2= -1+(x-1)^2/2 using the given Taylor polynomial approximate f(1.05) with 2 digits rounding and the find the relative error of the obtained value (Note f(1.05=0.0512). write down the answer and all the calculations steps in the text filed.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT