Question

Non Euclidean Geometry Show that if z=x+yi with y>0, then |U(z)|<1, where U(z)= (iz+1)/(z+i)

Non Euclidean Geometry

Show that if z=x+yi with y>0, then |U(z)|<1, where U(z)= (iz+1)/(z+i)

Homework Answers

Answer #1

Note that for this to be true one need as take , then , and , then . o one need to assume also.

, Note that

Now to show it is enough to show or , as .

Note that (as ) (as )

Thus we have .

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Describe Non-Euclidean Geometry and show a visual example.
Describe Non-Euclidean Geometry and show a visual example.
Write down the parametrized surfaces as level surfaces {f(x,y,z)=0}. x=ucosv, y=usinv, z=u, 0 <= u <=...
Write down the parametrized surfaces as level surfaces {f(x,y,z)=0}. x=ucosv, y=usinv, z=u, 0 <= u <= 2, 0 <= v <= 2pi x = 2cosu*cosv, y = 2cosu*sinv, z = 2sinu, 0 <= u <= 2pi, 0 <= v <= pi
Let X=2N={x=(x1,x2,…):xi∈{0,1}} and define d(x,y)=2∑(i≥1)(3^−i)*|xi−yi|. Define f:X→[0,1] by f(x)=d(0,x), where 0=(0,0,0,…). Prove that maps X onto...
Let X=2N={x=(x1,x2,…):xi∈{0,1}} and define d(x,y)=2∑(i≥1)(3^−i)*|xi−yi|. Define f:X→[0,1] by f(x)=d(0,x), where 0=(0,0,0,…). Prove that maps X onto the Cantor set and satisfies (1/3)*d(x,y)≤|f(x)−f(y)|≤d(x,y) for x,y∈2N.
In C 2 , show that hx, yi = xA∗y is an inner product, where A...
In C 2 , show that hx, yi = xA∗y is an inner product, where A = 3 1 + i 1 − i 1
consider the joint density function Fx,y,za (x,y,z)=(x+y)e^(-z) where 0<x<1, 0<y<1, z>0 find the marginal density of...
consider the joint density function Fx,y,za (x,y,z)=(x+y)e^(-z) where 0<x<1, 0<y<1, z>0 find the marginal density of z : fz (z). hint. figure out which common distribution Z follows and report the rate parameter integral (x+y)e^(-z) dz (x+y)(-e^(-z) + C is my answer 1. ???
Let X, Y ∼ U[0, 1], be independent and let Z = max{X, Y }. (a)...
Let X, Y ∼ U[0, 1], be independent and let Z = max{X, Y }. (a) (10 points) Calculate Pr[Z ≤ a]. (b) (10 points) Calculate the density function of Z. (c) (5 points) Calculate V ar(Z).
Let X and Y be random variable follow uniform U[0, 1]. Let Z = X to...
Let X and Y be random variable follow uniform U[0, 1]. Let Z = X to the power of Y. What is the distribution of Z?
Evaluate H C F · dr, if F(x, y, z) = yi + 2xj + yzk,...
Evaluate H C F · dr, if F(x, y, z) = yi + 2xj + yzk, and C is the curve of intersection of the part of the paraboliod z = 1 − x 2 − y 2 in the first octant (x ≥ 0, y ≥ 0, z ≥ 0) with the coordinate planes x = 0, y = 0 and z = 0, oriented counterclockwise when viewed from above. The answer is pi/4+4/15
A fluid is flowing through space following the vector field F(x, y, z) = yi −...
A fluid is flowing through space following the vector field F(x, y, z) = yi − xj + zk. A filter is in the shape of the portion of the paraboloid z = x^2 + y^2 having 0 <= x <= 3 and 0 <= y <= 3, oriented inwards (and upwards). Find the rate at which the fluid is moving through the filter. PLEASE SOLVE ON MATLAB, when I did it by hand I got 18.
For the 3-CNF f = (x’ +y’+z)& (x+y’+z’)&(x+y+z’)& (x’+y+z)&(x’+y+z’) &(x+y+z) where “+” is or, “&” is...
For the 3-CNF f = (x’ +y’+z)& (x+y’+z’)&(x+y+z’)& (x’+y+z)&(x’+y+z’) &(x+y+z) where “+” is or, “&” is and operations, “ ’ ” is negation. a)give 0-1 assignment to variables such that f=1    x= ______ y= ______ z= ____ f=0    x= ______ y= ______ z= ____ - b) Draw the corresponding graph and mark the maximum independent set. (you can draw on paper, scan and insert here)