Question

Let p be prime. Show that the equation x^2 is congruent to 1(mod p) has just...

Let p be prime. Show that the equation x^2 is congruent to 1(mod p) has just two solutions in Zp (the set of integers). We cannot use groups.

Homework Answers

Answer #1

Ok as you said not to use concept of group here.

Given :    

To prove: It has only two solution.

Since,         

or   by definition of prime

or  

Combining both, we can write it as:

  

Therefore,   

   we got our original congrunce relation. Hence, - 1,+1 are only to solutions which are integer.  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let p be a prime that is congruent to 3 mod 4. Prove that there is...
Let p be a prime that is congruent to 3 mod 4. Prove that there is no solution to the congruence x2≡−1 modp. (Hint: what would be the order of x?)
Let p be an odd prime, and let x = [(p−1)/2]!. Prove that x^2 ≡ (−1)^(p+1)/2...
Let p be an odd prime, and let x = [(p−1)/2]!. Prove that x^2 ≡ (−1)^(p+1)/2 (mod p). (You will need Wilson’s theorem, (p−1)! ≡−1 (mod p).) This gives another proof that if p ≡ 1 (mod 4), then x^2 ≡ −1 (mod p) has a solution.
1. Let p be any prime number. Let r be any integer such that 0 <...
1. Let p be any prime number. Let r be any integer such that 0 < r < p−1. Show that there exists a number q such that rq = 1(mod p) 2. Let p1 and p2 be two distinct prime numbers. Let r1 and r2 be such that 0 < r1 < p1 and 0 < r2 < p2. Show that there exists a number x such that x = r1(mod p1)andx = r2(mod p2). 8. Suppose we roll...
Let p be be prime and p ≡ 1 (mod 4|a|). Prove that a is a...
Let p be be prime and p ≡ 1 (mod 4|a|). Prove that a is a quadratic residue mod p.
suppose that p is a prime with p= 3 ( mod 4). Show that for all...
suppose that p is a prime with p= 3 ( mod 4). Show that for all x in Z_p, it is not possible for both x and -x to be squares (x and -x cannot have a square root)
Let p be an odd prime of the form p = 3k+2. Show that if a^3...
Let p be an odd prime of the form p = 3k+2. Show that if a^3 ≡ b^3 (mod p), then a ≡ b (mod p). Conclude that 1^3,2^3,…,p^3 form a complete system of residues mod p.
Let p be a prime and let a be a primitive root modulo p. Show that...
Let p be a prime and let a be a primitive root modulo p. Show that if gcd (k, p-1) = 1, then b≡ak (mod p) is also a primitive root modulo p.
Prove: If p is prime and p ≡ 7 (mod 8), then p | 2(p−1)/2 −...
Prove: If p is prime and p ≡ 7 (mod 8), then p | 2(p−1)/2 − 1. (Hint: Use the Legendre symbol (2/p) and Euler's criterion.)
In this question we show that we can use φ(n)/2. Let n = pq. Let x...
In this question we show that we can use φ(n)/2. Let n = pq. Let x be a number so that gcd(x, n) = 1. Show that x φ(n)/2 = 1 mod p and x φ(n)/2 = 1 mod q, Show that this implies that and x φ(n)/2 = 1 mod n
Let n = 391 = 17x23 (which is not a prime number) a. Using Maple to...
Let n = 391 = 17x23 (which is not a prime number) a. Using Maple to show that 2n-1 is not congruent to 1 (mod n).    b. Use Maple Find a non-zero exponent j such that 2j ≡1 (mod n).